Transformer作者出走谷歌创业,专攻通用人工智能,已获得6500万美元投资

本文主要是介绍Transformer作者出走谷歌创业,专攻通用人工智能,已获得6500万美元投资,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

丰色 发自 凹非寺
量子位 | 公众号 QbitAI

最近,一家AI初创公司引起了不少人的注意。

在推特上宣布成立之时,有不少人为其点赞和转发。

5b55e87eb9282e40368c02b169bce61b.png

一上来就要搞通用人工智能,什么来头?

我们看了一下它的创始人名单:

fd087c2e0df64e47b6612d8281e9983e.png

Ashish Vaswani和Niki Parmar,这不是大名鼎鼎的Transformer论文作者吗?

这篇开山之作引用次数已高达4万,浏览新论文时经常会看到“(Vaswani et al., 2017)”的字样,以至于这个名字都快被刻进DNA了。

553b7b8b08a0030d96552a4f6ef3ef2b.png

他们这是,离开谷歌了?

Transformer作者出走谷歌创业

Ashish Vaswani和Niki Parmar两位作者在推特上的官宣证实了这一消息。

be5a60aa7fe122919c6937166e12f5e0.png
c34d54cb434a47c2ef3b87469d956b00.png

两位大佬在谷歌干了5年有余,做出了Transformer这一具有代表性的傲人成绩后,开始了新的职业生涯。

他们参与创办的这家AI公司,名叫Adept ,目标是创造让人和计算机能够协同工作的通用人工智能。

说的更直白一些,他们就是要打造一个通用模型,它能做到不是让人用计算机来完成工作,而是让人和计算机一起使用同样的工具合作完成工作。

至于为什么要离开谷歌创业,这事儿还是得从Transformer说起。

众所周知,2017年诞生的Transfromer,具有高度的通用能力,一路从最初的NLP横跨CV等领域,成为了不少巨型模型的基本架构,包括大名鼎鼎的GPT-3、BERT、AlphaFold等。

截止目前,Transfromer在谷歌学术上显示的引用次数已达40723次。

顺便还带火了“xxx is all you need”格式的论文标题党方式。

而Ashish Vaswani和Niki Parmar和其他创始人们,正是看重Transformer的通用智慧,他们表示:

Transformer应该是第一个对每个主要AI用例都能“正常工作”的神经网络。

这让他们相信:通用人工智能是完全有可能被实现的

但遗憾的是,尽管他们训练出了越来越大的Transformer,希望最终建立一个支持所有ML用例的通用Transformer,但眼下就已经出现了一个明显的限制:

Transformer可以写出一篇不错的文章,我们却没法要求它完成帮人订飞机票、给供应商开发票甚至做科学实验等等工作。

所以,这些人决定创办通用人工智能公司Adept。

正如前面所提到的,Adept要实现的通用人工智能模型不仅是读读写写,还能使用Airtable、Photoshop、ATS、Tableau、Twilio等工具帮你完成诸如“生成本月阅读报告”等工作。

因此有人认为,Adept的目标更像是协作智能,它选择了和其他通用人工智能(AGI)公司截然不同的实现道路,即并非建立AGI来接管各种有价值的任务,而是建立AI工具,来帮人类完成任务。这种方式更容易实现。

ff231b7192ec2aa61dccd8b3628485f2.png

创业阵容豪华

Ashish Vaswani博士毕业于南加州大学,在谷歌大脑工作已有5年;Niki Parmar则是在印度上完大学后,同样在南加州大学读完硕士,在谷歌工作了近7年。

Adept的创始团队阵容除了这两位以外也非常豪华:

  • Kelsey Schroeder,斯坦福大学计算数学(computational mathematics )专业硕士,前谷歌大模型生产infra的产品负责人;

  • Anmol Gulati,在谷歌主要做语音识别模型;

  • Augustus Odena,在谷歌领导大型语言模型相关的工作,也有不少图像合成方面的研究;

  • David Luan,前OpenAI加州实验室工程副总裁,参与过GPT-2、GPT-3、CLIP和DALL-E等模型的开发工作,后来他加入谷歌,担任谷歌大脑大模型研究的Director;

  • Erich Elsen,机器学习和高性能计算交叉领域的研究人员,前Deepmind员工,主要研究大模型,在更早之前,还分别在谷歌和百度(硅谷AI Lab)干了两年;

  • Fred Bertsch,谷歌数据和协作人工智能系统方面的专家。

最后一位,Maxwell Nye,是刚从MIT毕业的一位博士生,研究重点为自动代码生成。

总的来说,可谓大佬云集,且各有专攻。

他们的雄心壮志也顺利为公司拉来了6500万美元的天使轮融资,投资人包括Uber CEO、特斯拉自动驾驶负责人、Airtable创始人等。

目前,该公司已经开放招聘,共包含13种岗位。

4ba92e765a5fb98491ceb702c5f868f2.png

One More Thing

Transformer作者一共有8位,都具有同等贡献。

其实在Ashish Vaswani和Niki Parmar之前,已经有1位——Aidan N. Gomez也出来创业了

e8fccc3965037df1700ad758ea934c43.png

Aidan N. Gomez的公司Co:here还是专注于NLP。

Co:here去年5月成立,还不到一年,投资者阵容倒是也很强大,包括图灵奖得主Geoffrey Hinton、GAN之父Ian Goodfellow,以及斯坦福大学教授李飞飞等人。

不知道若干年以后,Adept以及Co:here能取得什么样的成果。

85ed117b5fa24939a1b986a7488169fd.png

参考链接:
[1]https://twitter.com/AdeptAILabs/status/1518975477917962245
[2]https://www.adept.ai/post/introducing-adept

这篇关于Transformer作者出走谷歌创业,专攻通用人工智能,已获得6500万美元投资的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/673177

相关文章

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境

使用JS/Jquery获得父窗口的几个方法(笔记)

<pre name="code" class="javascript">取父窗口的元素方法:$(selector, window.parent.document);那么你取父窗口的父窗口的元素就可以用:$(selector, window.parent.parent.document);如题: $(selector, window.top.document);//获得顶级窗口里面的元素 $(

基于人工智能的智能家居语音控制系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 随着物联网(IoT)和人工智能技术的发展,智能家居语音控制系统已经成为现代家庭的一部分。通过语音控制设备,用户可以轻松实现对灯光、空调、门锁等家电的控制,提升生活的便捷性和舒适性。本文将介绍如何构建一个基于人工智能的智能家居语音控制系统,包括环境准备

从希腊神话到好莱坞大片,人工智能的七大历史时期值得铭记

本文选自historyextra,机器之心编译出品,参与成员:Angulia、小樱、柒柒、孟婷 你可能听过「技术奇点」,即本世纪某个阶段将出现超级智能,那时,技术将会以人类难以想象的速度飞速发展。同样,黑洞也是一个奇点,在其上任何物理定律都不适用;因此,技术奇点也是超越未来理解范围的一点。 然而,在我们到达那个奇点之前(假设我们能到达),还存在另一个极大的不连续问题,我将它称之

j2EE通用jar包的作用

原文:http://blog.sina.com.cn/s/blog_610901710101kx37.html IKIKAnalyzer3.2.8.jar // 分词器 ant-junit4.jar // ant junit antlr-2.7.6.jar // 没有此包,hibernate不会执行hql语句。并且会报NoClassDefFoundError: antlr

[Day 73] 區塊鏈與人工智能的聯動應用:理論、技術與實踐

AI在健康管理中的應用實例 1. 引言 隨著健康管理需求的提升,人工智能(AI)在該領域的應用越來越普遍。AI可以幫助醫療機構提升效率、精準診斷疾病、個性化治療方案,以及進行健康數據分析,從而改善病患的健康狀況。這篇文章將探討AI如何應用於健康管理,並通過具體代碼示例說明其技術實現。 2. AI在健康管理中的主要應用場景 個性化健康建議:通過分析用戶的健康數據,如飲食、運動、睡眠等,AI可

全英文地图/天地图和谷歌瓦片地图杂交/设备分布和轨迹回放/无需翻墙离线使用

一、前言说明 随着风云局势的剧烈变化,对我们搞软件开发的人员来说,影响也是越发明显,比如之前对美对欧的软件居多,现在慢慢的变成了对大鹅和中东以及非洲的居多,这两年明显问有没有俄语或者阿拉伯语的输入法的增多,这要是放在2019年以前,一年也遇不到一个人问这种需求场景的。 地图应用这块也是,之前的应用主要在国内,现在慢慢的多了一些外国的应用场景,这就遇到一个大问题,我们平时主要开发用的都是国内的地

通用内存快照裁剪压缩库Tailor介绍及源码分析(一)

背景 我们知道内存快照是治理 OOM 问题及其他类型的内存问题的重要数据源,内存快照中保存了进程虚拟机的完整的堆内存数据,很多时候也是调查其他类型异常的重要参考。但是dump出来的堆转储文件.hprof往往很大,以 LargeHeap 应用为例,其 OOM 时的内存快照大小通常在512M左右,要有效的存储和获取都是一个问题。 线下拿到hprof文件相对容易,也可以预防OOM,但覆盖的场景十分有

SpringBoot中利用EasyExcel+aop实现一个通用Excel导出功能

一、结果展示 主要功能:可以根据前端传递的参数,导出指定列、指定行 1.1 案例一 前端页面 传递参数 {"excelName": "导出用户信息1725738666946","sheetName": "导出用户信息","fieldList": [{"fieldName": "userId","fieldDesc": "用户id"},{"fieldName": "age","fieldDe

知名AIGC人工智能专家培训讲师唐兴通谈AI大模型数字化转型数字新媒体营销与数字化销售

在过去的二十年里,中国企业在数字营销领域经历了一场惊心动魄的变革。从最初的懵懂无知到如今的游刃有余,这一路走来,既有模仿学习的艰辛,也有创新突破的喜悦。然而,站在人工智能时代的门槛上,我们不禁要问:下一个十年,中国企业将如何在数字营销的浪潮中乘风破浪? 一、从跟风到精通:中国数字营销的进化史 回顾过去,中国企业在数字营销领域的发展可谓是一部"跟风学习"的编年史。从最初的搜索引擎营销(SEM),