PyTorch基础-Tensors属性、Tensor的运算

2024-02-03 04:04

本文主要是介绍PyTorch基础-Tensors属性、Tensor的运算,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

PyTorch的基本概念

Tensor的基本概念

张量高于标量、向量、矩阵
标量说零维的张量,向量是一维的张量,矩阵是二维的张量

Tensor与机器学习的关系

image.png

Tensor的创建

函数功能
Tensor(*size)基础构造函数
Tensor(data)类似np.array
ones(*size)全1Tensor
zeros(*size)全0Tensor
eye(*size)对角线为1,其他为0
arange(s,e,step)从s到e,步长为step
linspace(s,e,steps)从s到e,均匀切分成steps份
rand/randn(*size)均匀/标准分布
normal(mean,std)/uniform_(from,to)正态分布/均匀分布
randperm(m)随机排列

实例
image.png
随机数 正态分布 标准分布
image.png
序列
image.png

Tensor的属性

  • 每一个Tensor有torch.dtype、torch.device、torch.layout三种属性
  • torch.device 标识了torch.Tensor对象在创建之后所存储在的设备名称
  • torch.layout表示torch.Tensor内存布局的对象
torch.tensor([1,2,3],dtype=torch.float32,device=torch.device('cpu'))

稀疏的张量

  • torch.sparse_coo_tensor
  • coo类型表示了非零元素的坐标形式
indices = torch.tensor([0,1,1],[2,0,2]])
values = torch.tensor([3,4,5],dtype=torch.float32)
x = torch.sparse_coo_tensor(i,v,[2,4])
dev = torch.device("cpu")
torch.tensor([2,2],device=dev)
torch.tensor([2,2],dtype=torch.float32,device=dev)

image.png
稀疏的张量

i=torch.tensor([[0,1,2],[0,1,2]])
v=torch.tensor([1,2,3])
torch.sparse_coo_tensor(i,v,(4,4))

image.png
转成稠密的张量

torch.sparse_coo_tensor(i,v,(4,4)).to_dense()

image.png

Tensor的算术运算

加法运算

c=a+b
c=torch.add(a,b)
a.add(b)
a.add_(b)#会修改a的值

image.png

减法运算

c=a-b
c=torch.sub(a,b)
a.sub(b)
a.sub_(b)#会修改a的值

image.png

乘法运算

  • 哈达玛积(element wise,对应元素相乘)
c=a*b
c=torch.mul(a,b)
a.mul(b)
a.mul_(b)

image.png

除法运算

c=a/b
c=torch.div(a,b)
a.div(b)
a.div_(b)

image.png

矩阵运算

  • 二维矩阵乘法运算操作包括torch.mm()、torch.matmul()、@
a=torch.ones(2,1)
b=torch.ones(1,2)
print(torch.mm(a,b))
print(torch.matmul(a,b))
print(a@b)
print(a.matmul(b))
print(a.mm(b))

image.png

  • 对于高维的Tensor(dim>2),定义其矩阵乘法仅在最后的两个维度上,要求前面的维度必须保持一致,就像矩阵的索引一样并且运算操作只有torch.matmul()
a=torch.ones(1,2,3,4)
b=torch.ones(1,2,4,3)
print(a.matmul(b))
print(torch.matmul(a,b))

image.png

幂运算

print(torch.pow(a,2))
print(a.pow(2))
print(a**2)
print(a.pow_(2))

image.png
e的n次方

print(torch.exp(a))
b=a.exp_()

image.png

开方运算

a.sqrt()
a.sqrt_()

image.png

对数

torch.log2(a)
torch.log10(a)
torch.log(a)
torch.log_(a)

image.png

Tensor的取整/取余运算

  • .floor()向下取整数
  • .ceil()向上取整数
  • .round()四舍五入
  • .trunc()裁剪,只取整数部分
  • .frac()只取小数部分
  • %取余

image.png

Tensor的比较运算

torch.eq(input,other, out=None) #按成员进行等式操作,相同返回True
torch.equal(tensor1,tensor2) #如果tensor1和tensor2有相同的size和elements,则为true
torch.ge(input, other, out=None) #input>= other
torch.gt(input, other, out=None) #input>other
torch.le(input, other, out=None) #input=<other
torch.lt(input, other, out=None) #input<other
torch.ne(input, other, out=None) #input != other 不等于

排序

torch.sort(input, dim=None, descending=False, out=None) 
#对目标input进行排序
torch.topk(input, k,dim=None, largest=True, sorted=Trueout=None)
#沿着指定维度返回最大k个数值及其索引值
torch.kthvalue(input, k, dim=None, out=None)
#沿着指定维度返回第k个最小值及其索引值

Tensor判定是否为finite/inf/nan

torch.isfinite(tensor)/torch.isinf(tensor)/torch.isnan(tensor)
返回一个标记元素是否为 finite/inf/nan 的mask 张量

Tensor的三角函数

  • torch.abs(input, out=None)
  • torch.acos(input, out=None)
  • torch.asin(input, out=None)
  • torch.atan(input, out=None)
  • torch.atan2(input, inpu2out=None)
  • torch.cos(input, out=None)
  • torch.cosh(input, out=None)
  • torch.sin(input, out=None)
  • torch.sinh(input, out=None)
  • torch.tan(input, out=None)
  • torch.tanh(input, out=None)

这篇关于PyTorch基础-Tensors属性、Tensor的运算的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/672936

相关文章

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

uva 575 Skew Binary(位运算)

求第一个以(2^(k+1)-1)为进制的数。 数据不大,可以直接搞。 代码: #include <stdio.h>#include <string.h>const int maxn = 100 + 5;int main(){char num[maxn];while (scanf("%s", num) == 1){if (num[0] == '0')break;int len =

滚雪球学Java(87):Java事务处理:JDBC的ACID属性与实战技巧!真有两下子!

咦咦咦,各位小可爱,我是你们的好伙伴——bug菌,今天又来给大家普及Java SE啦,别躲起来啊,听我讲干货还不快点赞,赞多了我就有动力讲得更嗨啦!所以呀,养成先点赞后阅读的好习惯,别被干货淹没了哦~ 🏆本文收录于「滚雪球学Java」专栏,专业攻坚指数级提升,助你一臂之力,带你早日登顶🚀,欢迎大家关注&&收藏!持续更新中,up!up!up!! 环境说明:Windows 10

【Linux 从基础到进阶】Ansible自动化运维工具使用

Ansible自动化运维工具使用 Ansible 是一款开源的自动化运维工具,采用无代理架构(agentless),基于 SSH 连接进行管理,具有简单易用、灵活强大、可扩展性高等特点。它广泛用于服务器管理、应用部署、配置管理等任务。本文将介绍 Ansible 的安装、基本使用方法及一些实际运维场景中的应用,旨在帮助运维人员快速上手并熟练运用 Ansible。 1. Ansible的核心概念

AI基础 L9 Local Search II 局部搜索

Local Beam search 对于当前的所有k个状态,生成它们的所有可能后继状态。 检查生成的后继状态中是否有任何状态是解决方案。 如果所有后继状态都不是解决方案,则从所有后继状态中选择k个最佳状态。 当达到预设的迭代次数或满足某个终止条件时,算法停止。 — Choose k successors randomly, biased towards good ones — Close

音视频入门基础:WAV专题(10)——FFmpeg源码中计算WAV音频文件每个packet的pts、dts的实现

一、引言 从文章《音视频入门基础:WAV专题(6)——通过FFprobe显示WAV音频文件每个数据包的信息》中我们可以知道,通过FFprobe命令可以打印WAV音频文件每个packet(也称为数据包或多媒体包)的信息,这些信息包含该packet的pts、dts: 打印出来的“pts”实际是AVPacket结构体中的成员变量pts,是以AVStream->time_base为单位的显

C 语言基础之数组

文章目录 什么是数组数组变量的声明多维数组 什么是数组 数组,顾名思义,就是一组数。 假如班上有 30 个同学,让你编程统计每个人的分数,求最高分、最低分、平均分等。如果不知道数组,你只能这样写代码: int ZhangSan_score = 95;int LiSi_score = 90;......int LiuDong_score = 100;int Zhou

c++基础版

c++基础版 Windows环境搭建第一个C++程序c++程序运行原理注释常亮字面常亮符号常亮 变量数据类型整型实型常量类型确定char类型字符串布尔类型 控制台输入随机数产生枚举定义数组数组便利 指针基础野指针空指针指针运算动态内存分配 结构体结构体默认值结构体数组结构体指针结构体指针数组函数无返回值函数和void类型地址传递函数传递数组 引用函数引用传参返回指针的正确写法函数返回数组

【QT】基础入门学习

文章目录 浅析Qt应用程序的主函数使用qDebug()函数常用快捷键Qt 编码风格信号槽连接模型实现方案 信号和槽的工作机制Qt对象树机制 浅析Qt应用程序的主函数 #include "mywindow.h"#include <QApplication>// 程序的入口int main(int argc, char *argv[]){// argc是命令行参数个数,argv是