本文主要是介绍C#函数之实现Lagrange插值算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
博主最近想自己独立地完成一个精密单点定位的应用程序,先实现最简单的功能,那么基础工作就是要对igs最终的精密星历产品进行插值,以满足结算的要求,详细阐述请看前述文章:卫星位置插值方法简介(一)
博主在看过原理后,便使用C#进行了Lagrange函数的编写,话不多说先上代码:
class interp{public double lagrange(List<double> T, List<double> f,double t){double L = 0;//最后返回的多项式值double[] l = new double[T.Count];//定义的每一个多项式系数列表for (int i = 0; i < l.Length; i++){double l1 = 1;//多项式系数分子double l2 = 1;//多项式系数分母for (int j = 0; j < T.Count; j++){ if (i != j){l1 = l1 * (t - T[j]);l2 = l2 * (T[i] - T[j]);}else{continue;}}l[i] = l1 / l2;}for (int i = 0; i < l.Length; i++){L = L + l[i] * f[i];}return L;}}
首先我是先建立了一个插值函数的类,这里面封装之后会写到的所有的插值函数,包括Lagrange插值和Newton插值法,然后具体实现了Lagrange函数
那么写完之后该怎样调用呢?请先看如下代码:
public int c;private void comboBox1_SelectedIndexChanged(object sender, EventArgs e){if (comboBox1.Text == "三阶"){c = 1;}if (comboBox1.Text == "五阶"){c = 2;}if (comboBox1.Text == "六阶"){c = 3;}if (comboBox1.Text == "八阶"){c = 4;}if (comboBox1.Text == "十二阶"){c = 5;}}private void button1_Click(object sender, EventArgs e){interp interp = new interp();List<double> T = new List<double>();List<double> ftx = new List<double>();List<double> fty = new List<double>();List<double> ftz = new List<double>();if (c == 1){T.Add(0);T.Add(0.25);T.Add(0.5);T.Add(1);ftx.Add(13686.913694);ftx.Add(14069.247504);ftx.Add(14261.728751);ftx.Add(14209.784087);fty.Add(-22099.331881);fty.Add(-22252.702708);fty.Add(-22148.736352);fty.Add(-21086.622807);ftz.Add(-4728.984963);ftz.Add(-1842.522185);ftz.Add(1076.236929);ftz.Add(6805.670796);double satx = interp.lagrange(T, ftx, 0.75);double saty = interp.lagrange(T, fty, 0.75);double satz = interp.lagrange(T, ftz, 0.75);textBox1.Text = satx.ToString();textBox2.Text = saty.ToString();textBox3.Text = satz.ToString();textBox4.Text = (Convert.ToDouble(textBox1.Text) - 14296.367615).ToString();textBox5.Text = (Convert.ToDouble(textBox2.Text) + 21764.787764).ToString();textBox6.Text = (Convert.ToDouble(textBox3.Text) - 3976.035651).ToString();}if (c == 2){T.Add(0);T.Add(0.25);T.Add(0.5);T.Add(1);T.Add(1.25);T.Add(1.5);ftx.Add(13686.913694);ftx.Add(14069.247504);ftx.Add(14261.728751);ftx.Add(14209.784087);ftx.Add(14041.598305);ftx.Add(13832.692938);fty.Add(-22099.331881);fty.Add(-22252.702708);fty.Add(-22148.736352);fty.Add(-21086.622807);fty.Add(-20109.159114);fty.Add(-18836.848057);ftz.Add(-4728.984963);ftz.Add(-1842.522185);ftz.Add(1076.236929);ftz.Add(6805.670796);ftz.Add(9514.965215);ftz.Add(12055.736360);double satx = interp.lagrange(T, ftx, 0.75);double saty = interp.lagrange(T, fty, 0.75);double satz = interp.lagrange(T, ftz, 0.75);textBox1.Text = satx.ToString();textBox2.Text = saty.ToString();textBox3.Text = satz.ToString();textBox4.Text = (Convert.ToDouble(textBox1.Text) - 14296.367615).ToString();textBox5.Text = (Convert.ToDouble(textBox2.Text) + 21764.787764).ToString();textBox6.Text = (Convert.ToDouble(textBox3.Text) - 3976.035651).ToString();}if (c == 3){T.Add(0);T.Add(0.25);T.Add(0.5);T.Add(1);T.Add(1.25);T.Add(1.5);T.Add(1.75);ftx.Add(13686.913694);ftx.Add(14069.247504);ftx.Add(14261.728751);ftx.Add(14209.784087);ftx.Add(14041.598305);ftx.Add(13832.692938);ftx.Add(13623.421198);fty.Add(-22099.331881);fty.Add(-22252.702708);fty.Add(-22148.736352);fty.Add(-21086.622807);fty.Add(-20109.159114);fty.Add(-18836.848057);fty.Add(-17283.676462);ftz.Add(-4728.984963);ftz.Add(-1842.522185);ftz.Add(1076.236929);ftz.Add(6805.670796);ftz.Add(9514.965215);ftz.Add(12055.736360);ftz.Add(14382.736529);double satx = interp.lagrange(T, ftx, 0.75);double saty = interp.lagrange(T, fty, 0.75);double satz = interp.lagrange(T, ftz, 0.75);textBox1.Text = satx.ToString();textBox2.Text = saty.ToString();textBox3.Text = satz.ToString();textBox4.Text = (Convert.ToDouble(textBox1.Text) - 14296.367615).ToString();textBox5.Text = (Convert.ToDouble(textBox2.Text) + 21764.787764).ToString();textBox6.Text = (Convert.ToDouble(textBox3.Text) - 3976.035651).ToString();}if (c == 4){T.Add(0);T.Add(0.25);T.Add(0.5);T.Add(1);T.Add(1.25);T.Add(1.5);T.Add(1.75);T.Add(2);T.Add(2.25);ftx.Add(13686.913694);ftx.Add(14069.247504);ftx.Add(14261.728751);ftx.Add(14209.784087);ftx.Add(14041.598305);ftx.Add(13832.692938);ftx.Add(13623.421198);ftx.Add(13451.837748);ftx.Add(13352.029724);fty.Add(-22099.331881);fty.Add(-22252.702708);fty.Add(-22148.736352);fty.Add(-21086.622807);fty.Add(-20109.159114);fty.Add(-18836.848057);fty.Add(-17283.676462);fty.Add(-15472.783785);fty.Add(-13435.708124);ftz.Add(-4728.984963);ftz.Add(-1842.522185);ftz.Add(1076.236929);ftz.Add(6805.670796);ftz.Add(9514.965215);ftz.Add(12055.736360);ftz.Add(14382.736529);ftz.Add(16454.540357);ftz.Add(18234.356133);double satx = interp.lagrange(T, ftx, 0.75);double saty = interp.lagrange(T, fty, 0.75);double satz = interp.lagrange(T, ftz, 0.75);textBox1.Text = satx.ToString();textBox2.Text = saty.ToString();textBox3.Text = satz.ToString();textBox4.Text = (Convert.ToDouble(textBox1.Text) - 14296.367615).ToString();textBox5.Text = (Convert.ToDouble(textBox2.Text) + 21764.787764).ToString();textBox6.Text = (Convert.ToDouble(textBox3.Text) - 3976.035651).ToString();}if (c == 5){T.Add(0);T.Add(0.25);T.Add(0.5);T.Add(1);T.Add(1.25);T.Add(1.5);T.Add(1.75);T.Add(2);T.Add(2.25);T.Add(2.5);T.Add(2.75);T.Add(3);T.Add(3.25);ftx.Add(13686.913694);ftx.Add(14069.247504);ftx.Add(14261.728751);ftx.Add(14209.784087);ftx.Add(14041.598305);ftx.Add(13832.692938);ftx.Add(13623.421198);ftx.Add(13451.837748);ftx.Add(13352.029724);ftx.Add(13352.620967);ftx.Add(13475.514776);ftx.Add(13734.929294);ftx.Add(14136.765807);fty.Add(-22099.331881);fty.Add(-22252.702708);fty.Add(-22148.736352);fty.Add(-21086.622807);fty.Add(-20109.159114);fty.Add(-18836.848057);fty.Add(-17283.676462);fty.Add(-15472.783785);fty.Add(-13435.708124);fty.Add(-11211.291704);fty.Add(-8844.292298);fty.Add(-6383.760457);fty.Add(-3881.252747);ftz.Add(-4728.984963);ftz.Add(-1842.522185);ftz.Add(1076.236929);ftz.Add(6805.670796);ftz.Add(9514.965215);ftz.Add(12055.736360);ftz.Add(14382.736529);ftz.Add(16454.540357);ftz.Add(18234.356133);ftz.Add(19690.739661);ftz.Add(20798.192448);ftz.Add(21537.629852);ftz.Add(21896.709250);double satx = interp.lagrange(T, ftx, 0.75);double saty = interp.lagrange(T, fty, 0.75);double satz = interp.lagrange(T, ftz, 0.75);textBox1.Text = satx.ToString();textBox2.Text = saty.ToString();textBox3.Text = satz.ToString();textBox4.Text = (Convert.ToDouble(textBox1.Text) - 14296.367615).ToString();textBox5.Text = (Convert.ToDouble(textBox2.Text) + 21764.787764).ToString();textBox6.Text = (Convert.ToDouble(textBox3.Text) - 3976.035651).ToString();}}
首先说明一下,本次编写只为完成基本功能,因此已知数值等信息是直接传入到列表中。
下面展示一下程序具体界面:
三阶(x,y米级,z厘米级)
五阶(x毫米级,y 厘米级,z亚毫米级)
六阶(x毫米级,y 亚毫米级,z亚毫米级)
八阶(x米级,y 米级,z米级)
十二阶(x米级,y 米级,z米级)
我们可以看到,插值精度并不会随着插值阶数的不断增加而不断提高,到达一定阶数后,精度反而会降低,产生龙格现象。
以上就是C#实现Lagrange插值算法的全部内容啦!
博主后面会将整个精密星历文件都进行Lagrange插值,并输出为.sp3文件,敬请期待哦!
感谢关注!感谢支持!一起学习,一起进步!文中若有疏漏之处,还请指正!
这篇关于C#函数之实现Lagrange插值算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!