海康威视 2024届 数字逻辑设计 实习笔试分析

2024-02-03 00:50

本文主要是介绍海康威视 2024届 数字逻辑设计 实习笔试分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!



说明

记录一下 5月11日晚,做的海康威视的一场笔试。分享给需要的IC人。

岗位:数字逻辑设计工程师(浙江 杭州)

转载需要本人同意!

我的见解不一定都是准确的,欢迎评论区交流指正~~


单选题

1、(3分)在Verilog中,下列语句哪个不是分支语句?

A、case

B、if-else

C、casez

D、repeat

一眼见,D

2、(3分)对于 reg[0:31] ,表达式 hik[0:+8]指的是 ?

IEEE的 Verilog 标准对此的原文表述:

 示例:

来看一个仿真:

// ========================================================================
// 功能描述:-1- 验证Verilog 语法部分位选择
// 作者:Xu Y. B.
// 时间:2023-05-12
// ========================================================================`timescale 1ns / 1psmodule TB_PART_SEL_BIT();
// 小端数据
wire [0:31] W_DATA = {8'd1,8'd2,8'd3,8'd4};wire [7:0] W_1 = W_DATA[0+:8]; //W_DATA[0:7]
wire [7:0] W_2 = W_DATA[31-:8];//W_DATA[24:31]
wire [8:0] W_3 = W_DATA[0:+8]; //W_DATA[0:8]
wire [8:0] W_4 = W_DATA[+1:+8]; //W_DATA[1:8]// 大端数据
wire [31:0] W_DATA_2 = {8'd1,8'd2,8'd3,8'd4};wire [7:0] W_5 = W_DATA_2[31-:8]; //W_DATA[31:24]
wire [7:0] W_6 = W_DATA_2[0+:8];  //W_DATA[7:0]
wire [7:0] W_7 = W_DATA_2[+8:+8]; //W_DATA[8]
wire [7:0] W_8 = W_DATA_2[+8:0];  //W_DATA[8:0]// 索引号为非正
wire [0:-31] W_DATA_3 = {8'd1,8'd2,8'd3,8'd4};
wire [7:0] W_9  = W_DATA_3[0-:8];    //W_DATA[0:-7]
wire [7:0] W_10 = W_DATA_3[-31+:8];  //W_DATA[-24:-31]
wire [7:0] W_11 = W_DATA_3[-8:-8];   //W_DATA[-8]// 简单总结:
// -1- 数字前面的 + - 符号表示正负,与其后的数字组成 位的索引号;
// -2- 数字后面的 + - 符号表示位选择的方向,±符号前的数字表示起始比特,:后面的数字表示位宽endmodule

看下仿真的结果:

3、(3分)如果a=4'b0101,则表达式^a= ?

了解 Verilog 规约运算的都知道,结果应该是 1’b0。不再赘述

4、(3分)netlist(网表)一般通过什么手段进行验证与其RTL一致性?

A、RTL验证

B、网表验证

C、形式验证

D、随机验证

形式验证是为了验证RTL代码与综合后的门级网表之间的逻辑等价性。功能是否等价,与时序无关。

此题我选择 C

5、(3分)已知在电路设计过程中,某性能需求弱但时序收敛难度大的乘法器最多需要5个时钟周期才能完成计算,若考虑对其设置multicyc采优化时序,则下方约束中应当如何设置。
set multicycle path ()-setup-from start point-to end point
set multicycle_path ()-hold-from start point-to end point

A、4,4

B、5,4

C、5,5

D、5,1

对于多周期约束,建立时间约束应为 5个时钟周期,保持时间约束由于1个时钟周期的时间抵消,所以约束4个时钟周期即可。所以此题我会选择 B

《Static Timing Analysis for Nanometer Designs  A Practical Approach》一书中也给出了答案。

6、(3分)假设一个模块完成任务1,需要依次进行A、B、C三个步骤,完成任务2,需要依次进行A、B、C、D四个步骤。A、B、C、D四个步骤分别耗时2clk,3clk,4clk,5clk。如果任务1需要先于任务2开始,那么该模块完成任务1和任务2最短需要()clk:

我认为需要14个clk。

由于二者的步骤存在交集,任务2可以在任务1的 A或B或C 步骤结束后开始任务2后的其他步骤,故共需要 2+3+4+5 = 14个clk。

7、(3分)芯片工作中,会经历多次断电和上电,在最后一次上电复位后,片上SRAM的内部存储空间的值是什么?

此题我觉得是随机值,SRAM具有断电易失特性。上电后的数据为随机值。

8、(3分)十进制数+127、-127的8-bt有符号数二进制补码表示为 ?

这个是基本的常识,+127的二进制补码:8‘b01111111;-127的二进制补码:8’10000001

9、(3分)仅使用以下一种路基,能够实现逻辑(A XOR B)OR(C AND D) 的是()

A、NAND
B、XOR
C、NOR
D、AND

 根据上面的推导结果,该逻辑可以只通过与非门实现。所以我觉得是 NAND

10、(3分)shell脚本中,可以使用什么关键字进行变量值打印到terminal?

echo

多选题

1、验证结束的前提条件描述正确的是?

A、缺陷曲线收敛

B、验证报告完成评审

C、覆盖率达到100%

D、多轮随机测试完成

覆盖率达到 100% 不是必要条件。

我觉得选择:ABD

2、(5分)关于存储器层次结构,下面哪些表述通常是正确的
A、在一次读操作中,返回的值取决于哪些块在cache中
B、cache利用了时间局部性
C、存储器层次结构的大部分成本在于最高一层
D、存储器层次结构的大部分容量处于最低一层

cache利用了时间局部性和空间局部性

cache中分成大小相同的块——cache块;当CPU需从内存中读写数据时,发送主存地址cache中查看有没有相应块,若没有则需要从内存中查找并替换cache中某块,再读取,此时便会造成缺失。

 

此题全选。

3、(5分)下面的AMBA总线,支持Burst传输的有()

A、APB

B、AXI

C、AXI-Lite

D、AHB

APB是高级外设总线,不支持突发传输。

AXI,高级扩展接口,支持突发传输。

AXI-Lite,轻量级的AXI协议,不支持突发传输。

AXI-Stream,支持无限制的突发传输。

AHB主要用于高性能模块(如CPU、DMA和DSP等)之间的连接,作为SoC的片上系统总线,它包括以下一些特性:单个时钟边沿操作;非三态的实现方式;支持突发传输;支持分段传输;支持多个主控制器;可配置32位~128位总线宽度;支持字节、半字和字的传输。

所以此题我觉得选:B D

4、(5分)下图中4条路经属于时序路径的是:

此题4条路经均为时序路径。 

 静态时序分析的圣经:《Static Timing Analysis for Nanometer Designs  A Practical Approach》一书中对此有说明:

5、下面的变量命名,在Verilog中合法的有:

A、233

B、define

C、for

D、HikVision

此题选,BD,相信你肯定对B有疑问,自己动手写下代码看看。可以再看看诸如:

include

timescale

的关键字作为信号名是否出现语法错误。

6、下面代码与设计预期不符或者功能有问题的有哪些?

A、assign a = din ^ n;//求指数
B、parameter WIDTH;assign WIDTH = 8;
C、reg [7:0] dat;
always @ (*) dat = 'd100;
D、assign a = b&c;
assign b = (~a) & d;

Verilog 运算符中 ^ 表示两个操作时按位异或运算。

parameter 型参数在定义时必须给默认值。

D选项我觉得语句有问题。 

C选项可以一直保持常量。

所以我觉得选 ABD

7、(5分)下面说法正确的是
A、信号的有效区间需要>=信号需要使用的区间
B、信号的语义不变的情况下,可以通过修改实现方案来扩展它的有效区间
C、信号的有效区间类型可分为:当前时刻有效、一段区间内有效、任意时刻有效,fifo的empty信号都是任意时刻有效
D、信号的有效区间需要<=信号名副其实的区间

fifo的empty信号应该不是一直有效的,主要是由于异步FIFO存在CDC问题。

我觉得除了C都又可以选。

8、(5分)验证的层次?
A、芯片系统级(chiplevel)
B、IP集成级(IPIntergration level)
C、模块单元级(blocklevel/unitlevel)
D、子系统级(sub-system level)

此题很明显,全选

问答题

(15分)CPU都是基于某一具体指令集架构而设计的,如基于x86指令集的英特尔处理器是典型的CISC,而基于risc-V指令集的开源rocket处理器是典型的RISC。那么,在计算机系统中,引入指令集架构有什么好处?

引入指令集架构具有以下好处:
1.简化硬件设计:指令集架构定义了一组标准的指令集,使得CPU的硬件设计可以按照这些指令集完成,减少了硬件设计的复杂度和难度。
2.提高代码可移植性:由于不同的CPU都遵循同一种指令集架构,因此编写的程序可以在不同的CPU上运行,提高了程序的可移植性。
3.提高编译器和优化程序的开发效率:指令集架构可以提供一些标准的指令格式和编码规则,使得编译器和优化程序的开发更加方便和高效。
4.降低软件开发成本:由于不同的CPU都遵循同一种指令集架构因此软件开发者只需要编写一份代码,就可以在不同的CPU上运行,减少了软件开发的成本和难度。
5.提高系统性能:指令集架构可以针对特定的应用场景进行优化,从而提高系统的性能。


总之,引入指令集架构可以提高硬件设计的简化程度、软件的可移植性、编译器和优化程序的开发效率、降低软件开发成本,并且可以针对特定的应用场景进行优化,从而提高系统的性能。

(15分)[N个8bit加法]请编写一个NUM INPUT个int8输入的加法模块,其中NUM INPUT的取值为2,4,8,16.
模块接口定义如下:
module #(
parameter NUM_INPUT=8

) add_n8bit(

input     [NUM_INPUT*8-1:0]  in,
output   [12-1:0]                      out
);

此题我采用加法树的结构实现。由于输入数据最多有16个,所以按最多的输入来编程。

设计代码:

// n个8位宽数据相加模块。n可取值 2 4 8 16
// Xu Y. B.
// 2023 05 13module add_n8bit #(
parameter NUM_INPUT = 8
)(
input 	[NUM_INPUT*8-1:0]	in,
output	[12-1:0]			out
);
wire [16*8-1:0] W_ALL_IN = {{((16-NUM_INPUT)*8){1'b0}},in};wire [8:0] W_ADD_L1[7:0];
wire [9:0] W_ADD_L2[3:0];
wire [10:0] W_ADD_L3[1:0];
// wire [11:0] W_ADD_L4;genvar GV_1;
generate for(GV_1 = 0;GV_1 < 8;GV_1 = GV_1 + 1)begin//扩展符号位并相加assign W_ADD_L1[GV_1] = {W_ALL_IN[GV_1*8+8-1],W_ALL_IN[GV_1*8+:8]} + {W_ALL_IN[(GV_1+8)*8+8-1],W_ALL_IN[(GV_1+8)*8+:8]};end
endgenerategenvar GV_2;
generatefor(GV_2 = 0;GV_2 < 4;GV_2 = GV_2 + 1)beginassign W_ADD_L2[GV_2] = {W_ADD_L1[GV_2][8],W_ADD_L1[GV_2]} + {W_ADD_L1[GV_2+4][8],W_ADD_L1[GV_2+4]};end
endgenerategenvar GV_3;
generatefor(GV_3 = 0;GV_3 < 2;GV_3 = GV_3 + 1)beginassign W_ADD_L3[GV_3] = {W_ADD_L2[GV_3][9],W_ADD_L2[GV_3]} + {W_ADD_L2[GV_3+2][9],W_ADD_L2[GV_3+2]};end
endgenerateassign out = {W_ADD_L3[0][10],W_ADD_L3[0]} + {W_ADD_L3[1][10],W_ADD_L3[1]};endmodule

仿真代码:

// 仿真验证模块 add_n8bit 功能
// Xu Y. B.
// 2023 05 13
// 输入有符号数 范围 -128~127`timescale 1ns / 1ps
module tb_add_n8bit();
parameter NUM_INPUT_1 = 16;
parameter NUM_INPUT_2 = 8;
parameter NUM_INPUT_3 = 4;
parameter NUM_INPUT_4 = 2;reg 	[NUM_INPUT_1*8-1:0]	in_1;
reg 	[NUM_INPUT_2*8-1:0]	in_2;
reg 	[NUM_INPUT_3*8-1:0]	in_3;
reg 	[NUM_INPUT_4*8-1:0]	in_4;wire	[12-1:0]			out_1;
wire	[12-1:0]			out_2;
wire	[12-1:0]			out_3;
wire	[12-1:0]			out_4;add_n8bit #(.NUM_INPUT(NUM_INPUT_1)) inst_add_n8bit_1 (.in(in_1), .out(out_1));
add_n8bit #(.NUM_INPUT(NUM_INPUT_2)) inst_add_n8bit_2 (.in(in_2), .out(out_2));
add_n8bit #(.NUM_INPUT(NUM_INPUT_3)) inst_add_n8bit_3 (.in(in_3), .out(out_3));
add_n8bit #(.NUM_INPUT(NUM_INPUT_4)) inst_add_n8bit_4 (.in(in_4), .out(out_4));initial
beginin_1 = {8'd100,-8'd100,8'd100,-8'd100,8'd120,8'd10,8'd10,-8'd40,8'd106,-8'd125,8'd110,8'd109,8'd100,8'd100,8'd100,8'd100};in_2 = {-8'd105,8'd15,8'd107,8'd106,8'd104,-8'd101,8'd15,8'd18};in_3 = {8'd30,8'd100,-8'd20,8'd100};in_4 = {8'd100,8'd22};
end
endmodule

仿真结果:

 


以上就是本次分享的所有题目,鉴于本人能力有限,有异议的地方请在评论区指正,谢谢!

这篇关于海康威视 2024届 数字逻辑设计 实习笔试分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/672524

相关文章

Redis主从/哨兵机制原理分析

《Redis主从/哨兵机制原理分析》本文介绍了Redis的主从复制和哨兵机制,主从复制实现了数据的热备份和负载均衡,而哨兵机制可以监控Redis集群,实现自动故障转移,哨兵机制通过监控、下线、选举和故... 目录一、主从复制1.1 什么是主从复制1.2 主从复制的作用1.3 主从复制原理1.3.1 全量复制

Redis主从复制的原理分析

《Redis主从复制的原理分析》Redis主从复制通过将数据镜像到多个从节点,实现高可用性和扩展性,主从复制包括初次全量同步和增量同步两个阶段,为优化复制性能,可以采用AOF持久化、调整复制超时时间、... 目录Redis主从复制的原理主从复制概述配置主从复制数据同步过程复制一致性与延迟故障转移机制监控与维

Redis连接失败:客户端IP不在白名单中的问题分析与解决方案

《Redis连接失败:客户端IP不在白名单中的问题分析与解决方案》在现代分布式系统中,Redis作为一种高性能的内存数据库,被广泛应用于缓存、消息队列、会话存储等场景,然而,在实际使用过程中,我们可能... 目录一、问题背景二、错误分析1. 错误信息解读2. 根本原因三、解决方案1. 将客户端IP添加到Re

Redis主从复制实现原理分析

《Redis主从复制实现原理分析》Redis主从复制通过Sync和CommandPropagate阶段实现数据同步,2.8版本后引入Psync指令,根据复制偏移量进行全量或部分同步,优化了数据传输效率... 目录Redis主DodMIK从复制实现原理实现原理Psync: 2.8版本后总结Redis主从复制实

锐捷和腾达哪个好? 两个品牌路由器对比分析

《锐捷和腾达哪个好?两个品牌路由器对比分析》在选择路由器时,Tenda和锐捷都是备受关注的品牌,各自有独特的产品特点和市场定位,选择哪个品牌的路由器更合适,实际上取决于你的具体需求和使用场景,我们从... 在选购路由器时,锐捷和腾达都是市场上备受关注的品牌,但它们的定位和特点却有所不同。锐捷更偏向企业级和专

Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)

《Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)》:本文主要介绍Python基于火山引擎豆包大模型搭建QQ机器人详细的相关资料,包括开通模型、配置APIKEY鉴权和SD... 目录豆包大模型概述开通模型付费安装 SDK 环境配置 API KEY 鉴权Ark 模型接口Prompt

Spring中Bean有关NullPointerException异常的原因分析

《Spring中Bean有关NullPointerException异常的原因分析》在Spring中使用@Autowired注解注入的bean不能在静态上下文中访问,否则会导致NullPointerE... 目录Spring中Bean有关NullPointerException异常的原因问题描述解决方案总结

python中的与时间相关的模块应用场景分析

《python中的与时间相关的模块应用场景分析》本文介绍了Python中与时间相关的几个重要模块:`time`、`datetime`、`calendar`、`timeit`、`pytz`和`dateu... 目录1. time 模块2. datetime 模块3. calendar 模块4. timeit

python-nmap实现python利用nmap进行扫描分析

《python-nmap实现python利用nmap进行扫描分析》Nmap是一个非常用的网络/端口扫描工具,如果想将nmap集成进你的工具里,可以使用python-nmap这个python库,它提供了... 目录前言python-nmap的基本使用PortScanner扫描PortScannerAsync异

Oracle数据库执行计划的查看与分析技巧

《Oracle数据库执行计划的查看与分析技巧》在Oracle数据库中,执行计划能够帮助我们深入了解SQL语句在数据库内部的执行细节,进而优化查询性能、提升系统效率,执行计划是Oracle数据库优化器为... 目录一、什么是执行计划二、查看执行计划的方法(一)使用 EXPLAIN PLAN 命令(二)通过 S