手把手教你用Keras实现英文到中文机器翻译 seq2seq+LSTM

本文主要是介绍手把手教你用Keras实现英文到中文机器翻译 seq2seq+LSTM,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

原文链接:https://blog.csdn.net/qq_44635691/article/details/106919244

该模型实现的是英文到中文的翻译,下图为了更好展示模型架构借用大佬的图(这里没有用到Embeddings):

本文完整代码:Github

目录

一、处理文本数据

1.获得翻译前后的句子

 2.创建关于 字符-index 和 index -字符的字典

3.对中文和英文句子One-Hot编码

二、建立模型

三、decoder预测每个字符

四、训练模型

五、展示


 



 整体由encoder和decoder两大部分组成,每部分都有一个LSTM网络,其中encoder输入原始的句子,输出状态向量;decoder输入的是含有开始符号的翻译后的句子,输出目标句子。

        具体步骤为:

1.encoder将输入序列进行编码成状态向量

2.decoder从第一个字符开始预测

3.向decoder喂入状态向量(state_h,state_c)和累计包含之前预测字符的独热编码(第一次的状态向量来自于encoder,后来预测每            目标序列的每个字符时,状态向量来源于decoder,predict出来的状态向量)

4.使用argmax预测对下一个字符的位置,再根据字典查找到对应的字符

5.将上一步骤中的字符添加到 target sequence中

6.直到预测到我们指定结束字符时结束循环

一、处理文本数据

这一步骤包含对原数据进行分割获得翻译前、后的句子,生成字符的字典,最后对翻译前后的句子进行One-Hot编码,便于处理数据。

1.获得翻译前后的句子

先看一下原数据的样式:

首先导入需要的库:

代码1.1.1import pandas as pd
import numpy as np
from keras.layers import Input, LSTM, Dense, merge,concatenate
from keras.optimizers import Adam, SGD
from keras.models import Model,load_model
from keras.utils import plot_model
from keras.models import Sequential#定义神经网络的参数
NUM_SAMPLES=3000   #训练样本的大小
batch_size = 64    #一次训练所选取的样本数
epochs = 100       #训练轮数
latent_dim = 256   #LSTM 的单元个数
用pandas读取文件,然后我们只要前两列内容代码1.1.2data_path='data/cmn.txt'
df=pd.read_table(data_path,header=None).iloc[:NUM_SAMPLES,0:2]
#添加标题栏
df.columns=['inputs','targets']
#每句中文举手加上‘\t’作为起始标志,句末加上‘\n’终止标志
df['targets']=df['targets'].apply(lambda x:'\t'+x+'\n')
最后是这样的形式:

最后是这样的形式:

代码1.1.3#获取英文、中文各自的列表
input_texts=df.inputs.values.tolist()
target_texts=df.targets.values.tolist()#确定中英文各自包含的字符。df.unique()直接取sum可将unique数组中的各个句子拼接成一个长句子
input_characters = sorted(list(set(df.inputs.unique().sum())))
target_characters = sorted(list(set(df.targets.unique().sum())))#英文字符中不同字符的数量
num_encoder_tokens = len(input_characters)
#中文字符中不同字符的数量
num_decoder_tokens = len(target_characters)
#最大输入长度
INUPT_LENGTH = max([ len(txt) for txt in input_texts])
#最大输出长度
OUTPUT_LENGTH = max([ len(txt) for txt in target_texts])2.创建关于 字符-index 和 index -字符的字典
代码1.2.1input_token_index = dict( [(char, i)for i, char in enumerate(input_characters)] )
target_token_index = dict( [(char, i) for i, char in enumerate(target_characters)] )reverse_input_char_index = dict([(i, char) for i, char in enumerate(input_characters)])
reverse_target_char_index = dict([(i, char) for i, char in enumerate(target_characters)])
3.对中文和英文句子One-Hot编码
代码1.3.1#需要把每条语料转换成LSTM需要的三维数据输入[n_samples, timestamp, one-hot feature]到模型中
encoder_input_data =np.zeros((NUM_SAMPLES,INUPT_LENGTH,num_encoder_tokens))
decoder_input_data =np.zeros((NUM_SAMPLES,OUTPUT_LENGTH,num_decoder_tokens))
decoder_target_data  = np.zeros((NUM_SAMPLES,OUTPUT_LENGTH,num_decoder_tokens))for i,(input_text,target_text) in enumerate(zip(input_texts,target_texts)):for t,char in enumerate(input_text):encoder_input_data[i,t,input_token_index[char]]=1.0for t, char in enumerate(target_text):decoder_input_data[i,t,target_token_index[char]]=1.0if t > 0:# decoder_target_data 不包含开始字符,并且比decoder_input_data提前一步decoder_target_data[i, t-1, target_token_index[char]] = 1.0
二、建立模型
代码2.1#定义编码器的输入encoder_inputs=Input(shape=(None,num_encoder_tokens))#定义LSTM层,latent_dim为LSTM单元中每个门的神经元的个数,return_state设为True时才会返回最后时刻的状态h,cencoder=LSTM(latent_dim,return_state=True)# 调用编码器,得到编码器的输出(输入其实不需要),以及状态信息 state_h 和 state_cencoder_outputs,state_h,state_c=encoder(encoder_inputs)# 丢弃encoder_outputs, 我们只需要编码器的状态encoder_state=[state_h,state_c]#定义解码器的输入decoder_inputs=Input(shape=(None,num_decoder_tokens))decoder_lstm=LSTM(latent_dim,return_state=True,return_sequences=True)# 将编码器输出的状态作为初始解码器的初始状态decoder_outputs,_,_=decoder_lstm(decoder_inputs,initial_state=encoder_state)#添加全连接层decoder_dense=Dense(num_decoder_tokens,activation='softmax')decoder_outputs=decoder_dense(decoder_outputs)#定义整个模型model=Model([encoder_inputs,decoder_inputs],decoder_outputs)model的模型图:

 model的模型图:



其中decoder在每个timestep有三个输入分别是来自encoder的两个状态向量state_h,state_c和经过One-Hot编码的中文序列 

代码2.2#定义encoder模型,得到输出encoder_statesencoder_model=Model(encoder_inputs,encoder_state)decoder_state_input_h=Input(shape=(latent_dim,))decoder_state_input_c=Input(shape=(latent_dim,))decoder_state_inputs=[decoder_state_input_h,decoder_state_input_c]# 得到解码器的输出以及中间状态decoder_outputs,state_h,state_c=decoder_lstm(decoder_inputs,initial_state=decoder_state_inputs)decoder_states=[state_h,state_c]decoder_outputs=decoder_dense(decoder_outputs)decoder_model=Model([decoder_inputs]+decoder_state_inputs,[decoder_outputs]+decoder_states)plot_model(model=model,show_shapes=True)plot_model(model=encoder_model,show_shapes=True)plot_model(model=decoder_model,show_shapes=True)return model,encoder_model,decoder_model

encoder的模型图:



decoder的模型图:

三、decoder预测每个字符

首先encoder根据输入序列生成状态向量states_value 并结合由包含开始字符"\t"的编码一并传入到decoder的输入层,预测出下个字符的位置sampled_token_index ,将新预测到的字符添加到target_seq中再进行One-Hot编码,用预测上个字符生成的状态向量作为新的状态向量。

以上过程在while中不断循环,直到预测到结束字符"\n",结束循环,返回翻译后的句子。从下图可直观的看出对于decoder部分是一个一个生成翻译后的序列,注意蓝线的指向是target_squence,它是不断被填充的。

代码3.1def decode_sequence(input_seq,encoder_model,decoder_model):# 将输入序列进行编码生成状态向量states_value = encoder_model.predict(input_seq)# 生成一个size=1的空序列target_seq = np.zeros((1, 1, num_decoder_tokens))# 将这个空序列的内容设置为开始字符target_seq[0, 0, target_token_index['\t']] = 1.# 进行字符恢复# 简单起见,假设batch_size = 1stop_condition = Falsedecoded_sentence = ''while not stop_condition:output_tokens, h, c = decoder_model.predict([target_seq] + states_value)
#        print(output_tokens)这里输出的是下个字符出现的位置的概率# 对下个字符采样  sampled_token_index是要预测下个字符最大概率出现在字典中的位置sampled_token_index = np.argmax(output_tokens[0, -1, :])sampled_char = reverse_target_char_index[sampled_token_index]decoded_sentence += sampled_char# 退出条件:生成 \n 或者 超过最大序列长度if sampled_char == '\n' or len(decoded_sentence) >INUPT_LENGTH  :stop_condition = True# 更新target_seqtarget_seq = np.zeros((1, 1, num_decoder_tokens))target_seq[0, 0, sampled_token_index] = 1.# 更新中间状态states_value = [h, c]return decoded_sentence
四、训练模型
model,encoder_model,decoder_model=create_model()
#编译模型
model.compile(optimizer='rmsprop',loss='categorical_crossentropy')
#训练模型
model.fit([encoder_input_data,decoder_input_data],decoder_target_data,batch_size=batch_size,epochs=epochs,validation_split=0.2)
#训练不错的模型为了以后测试可是保存
model.save('s2s.h5')
encoder_model.save('encoder_model.h5')
decoder_model.save('decoder_model.h5')
五、展示
if __name__ == '__main__':intro=input("select train model or test model:")if intro=="train":print("训练模式...........")train()else:print("测试模式.........")while(1):test()

 

 

训练数据用了3000组 ,大部分是比较短的词组或者单词。效果不能算是太好,但是比起英语渣渣还算可以吧。

Reference:

https://blog.keras.io/a-ten-minute-introduction-to-sequence-to-sequence-learning-in-keras.html

https://towardsdatascience.com/neural-machine-translation-using-seq2seq-with-keras-c23540453c74

 

这篇关于手把手教你用Keras实现英文到中文机器翻译 seq2seq+LSTM的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/672429

相关文章

Java实现将byte[]转换为File对象

《Java实现将byte[]转换为File对象》这篇文章将通过一个简单的例子为大家演示Java如何实现byte[]转换为File对象,并将其上传到外部服务器,感兴趣的小伙伴可以跟随小编一起学习一下... 目录前言1. 问题背景2. 环境准备3. 实现步骤3.1 从 URL 获取图片字节数据3.2 将字节数组

Win32下C++实现快速获取硬盘分区信息

《Win32下C++实现快速获取硬盘分区信息》这篇文章主要为大家详细介绍了Win32下C++如何实现快速获取硬盘分区信息,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 实现代码CDiskDriveUtils.h#pragma once #include <wtypesbase

Nginx实现前端灰度发布

《Nginx实现前端灰度发布》灰度发布是一种重要的策略,它允许我们在不影响所有用户的情况下,逐步推出新功能或更新,通过灰度发布,我们可以测试新版本的稳定性和性能,下面就来介绍一下前端灰度发布的使用,感... 目录前言一、基于权重的流量分配二、基于 Cookie 的分流三、基于请求头的分流四、基于请求参数的分

Python Excel实现自动添加编号

《PythonExcel实现自动添加编号》这篇文章主要为大家详细介绍了如何使用Python在Excel中实现自动添加编号效果,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1、背景介绍2、库的安装3、核心代码4、完整代码1、背景介绍简单的说,就是在Excel中有一列h=会有重复

一文教你解决Python不支持中文路径的问题

《一文教你解决Python不支持中文路径的问题》Python是一种广泛使用的高级编程语言,然而在处理包含中文字符的文件路径时,Python有时会表现出一些不友好的行为,下面小编就来为大家介绍一下具体的... 目录问题背景解决方案1. 设置正确的文件编码2. 使用pathlib模块3. 转换路径为Unicod

MySQL的隐式锁(Implicit Lock)原理实现

《MySQL的隐式锁(ImplicitLock)原理实现》MySQL的InnoDB存储引擎中隐式锁是一种自动管理的锁,用于保证事务在行级别操作时的数据一致性和安全性,本文主要介绍了MySQL的隐式锁... 目录1. 背景:什么是隐式锁?2. 隐式锁的工作原理3. 隐式锁的类型4. 隐式锁的实现与源代码分析4

如何通过Golang的container/list实现LRU缓存算法

《如何通过Golang的container/list实现LRU缓存算法》文章介绍了Go语言中container/list包实现的双向链表,并探讨了如何使用链表实现LRU缓存,LRU缓存通过维护一个双向... 目录力扣:146. LRU 缓存主要结构 List 和 Element常用方法1. 初始化链表2.

MySQL中Next-Key Lock底层原理实现

《MySQL中Next-KeyLock底层原理实现》Next-KeyLock是MySQLInnoDB存储引擎中的一种锁机制,结合记录锁和间隙锁,用于高效并发控制并避免幻读,本文主要介绍了MySQL中... 目录一、Next-Key Lock 的定义与作用二、底层原理三、源代码解析四、总结Next-Key L

Java中数组转换为列表的两种实现方式(超简单)

《Java中数组转换为列表的两种实现方式(超简单)》本文介绍了在Java中将数组转换为列表的两种常见方法使用Arrays.asList和Java8的StreamAPI,Arrays.asList方法简... 目录1. 使用Java Collections框架(Arrays.asList)1.1 示例代码1.

Redis实现RBAC权限管理

《Redis实现RBAC权限管理》本文主要介绍了Redis实现RBAC权限管理,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录1. 什么是 RBAC?2. 为什么使用 Redis 实现 RBAC?3. 设计 RBAC 数据结构