C++使用OpenCV时计算MSE

2024-02-02 21:40
文章标签 c++ 使用 计算 opencv mse

本文主要是介绍C++使用OpenCV时计算MSE,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言

在这里插入图片描述

OpenCV —— Open Source Computer Vision

OpenCV是一个跨平台的计算机视觉库。是由英特尔公司发起并参与开发,以BSD许可证授权发行,可以在商业和研究领域中免费使用。可用于开发实时的图像处理、计算机视觉以及模式识别程序。

在图像处理任务中,评价图像质量标准一般使用MSE(Mean Square Error ,均方误差)和 PSNR(Peak Signal Noise Ratio,峰值信噪比)。

均方误差在统计学中是对于无法观察的参数的一个估计函数,其定义为:
在这里插入图片描述
它是“误差”的平方的期望值。误差就是估计值与被估计量的差。

在图像质量评估时一般用来比较目标图与原图的差异。

使用

在使用OpenCV时可以通过矩阵操作来避免for循环嵌套计算。

需要注意的是乘除操作一般要注意将图像本身的uint8转换成float后再做,否则精度误差可能会导致较大偏差。

#include <iostream>
#include <opencv2/imgcodecs.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#define CV_LOAD_IMAGE_COLOR 1double compute_MSE(cv::Mat Mat1, cv::Mat Mat2)
{cv::Mat M1 = Mat1.clone();cv::Mat M2 = Mat2.clone();cv::Mat Diff;// 提前转换为32F精度M1.convertTo(M1,CV_32F);M2.convertTo(M2,CV_32F);Diff.convertTo(Diff,CV_32F);cv::absdiff(M1,M2,Diff); //  Diff = | M1 - M2 |Diff=Diff.mul(Diff);     // | M1 - M2 |.^2cv::Scalar S = cv::sum(Diff);  //分别计算每个通道的元素之和double sse;   // square errorif (Diff.channels()==3)sse = S.val[0] +S.val[1] + S.val[2];  // sum of all channelselsesse = S.val[0];int nTotalElement = M2.channels()*M2.total();double mse = ( sse / (double)nTotalElement );  //return mse;
}int main(int argc, char *argv[]) {std::string input_img_path1 = argv[1];std::string input_img_path2 = argv[2];cv::Mat img1, img2;img1 = cv::imread(input_img_path1, CV_LOAD_IMAGE_COLOR);img2 = cv::imread(input_img_path2, CV_LOAD_IMAGE_COLOR);// 注意两张图片大小需要一致double mse = compute_MSE(img1, img2);std::cout << "MSE: "<< mse << std::endl;return 0;

在这里插入图片描述

参考资料

[1] 均方误差 - 维基百科,自由的百科全书
[2] Opencv如何计算PSNR和MSE

这篇关于C++使用OpenCV时计算MSE的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/672056

相关文章

springboot security快速使用示例详解

《springbootsecurity快速使用示例详解》:本文主要介绍springbootsecurity快速使用示例,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝... 目录创www.chinasem.cn建spring boot项目生成脚手架配置依赖接口示例代码项目结构启用s

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.

java中使用POI生成Excel并导出过程

《java中使用POI生成Excel并导出过程》:本文主要介绍java中使用POI生成Excel并导出过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录需求说明及实现方式需求完成通用代码版本1版本2结果展示type参数为atype参数为b总结注:本文章中代码均为

Spring Boot3虚拟线程的使用步骤详解

《SpringBoot3虚拟线程的使用步骤详解》虚拟线程是Java19中引入的一个新特性,旨在通过简化线程管理来提升应用程序的并发性能,:本文主要介绍SpringBoot3虚拟线程的使用步骤,... 目录问题根源分析解决方案验证验证实验实验1:未启用keep-alive实验2:启用keep-alive扩展建

python+opencv处理颜色之将目标颜色转换实例代码

《python+opencv处理颜色之将目标颜色转换实例代码》OpenCV是一个的跨平台计算机视觉库,可以运行在Linux、Windows和MacOS操作系统上,:本文主要介绍python+ope... 目录下面是代码+ 效果 + 解释转HSV: 关于颜色总是要转HSV的掩膜再标注总结 目标:将红色的部分滤

使用Java实现通用树形结构构建工具类

《使用Java实现通用树形结构构建工具类》这篇文章主要为大家详细介绍了如何使用Java实现通用树形结构构建工具类,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录完整代码一、设计思想与核心功能二、核心实现原理1. 数据结构准备阶段2. 循环依赖检测算法3. 树形结构构建4. 搜索子

GORM中Model和Table的区别及使用

《GORM中Model和Table的区别及使用》Model和Table是两种与数据库表交互的核心方法,但它们的用途和行为存在著差异,本文主要介绍了GORM中Model和Table的区别及使用,具有一... 目录1. Model 的作用与特点1.1 核心用途1.2 行为特点1.3 示例China编程代码2. Tab

SpringBoot使用OkHttp完成高效网络请求详解

《SpringBoot使用OkHttp完成高效网络请求详解》OkHttp是一个高效的HTTP客户端,支持同步和异步请求,且具备自动处理cookie、缓存和连接池等高级功能,下面我们来看看SpringB... 目录一、OkHttp 简介二、在 Spring Boot 中集成 OkHttp三、封装 OkHttp

C++ 中的 if-constexpr语法和作用

《C++中的if-constexpr语法和作用》if-constexpr语法是C++17引入的新语法特性,也被称为常量if表达式或静态if(staticif),:本文主要介绍C++中的if-c... 目录1 if-constexpr 语法1.1 基本语法1.2 扩展说明1.2.1 条件表达式1.2.2 fa

使用Python实现获取网页指定内容

《使用Python实现获取网页指定内容》在当今互联网时代,网页数据抓取是一项非常重要的技能,本文将带你从零开始学习如何使用Python获取网页中的指定内容,希望对大家有所帮助... 目录引言1. 网页抓取的基本概念2. python中的网页抓取库3. 安装必要的库4. 发送HTTP请求并获取网页内容5. 解