Linux下快速解析nf_conntrack

2024-02-02 21:38
文章标签 linux 快速 解析 nf conntrack

本文主要是介绍Linux下快速解析nf_conntrack,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1. 背景

回顾了项目需求是系统的统计tcp连接数;
于是想到了 nf_conntrack 这个Linux内核提供的记录和跟踪连接状态的功能;
然后写了个程序解析 /proc/net/nf_conntrack这个映射文件,后来悲剧就发生了,当conntrack表记录变增加到1w以上之后,解析速度急速下降,到了10w规模后,解析耗时几十秒都不能完成,,,
终于后来翻到了netfilter的老巢,发现了解决方法:libnml、libnetfilter_conntrack

2. 使用

核心原理是通过netlink套接字的方式,与内核交互,查询得到结果
libmnl基本方法:

extern struct mnl_socket *mnl_socket_open(int bus);
extern int mnl_socket_bind(struct mnl_socket *nl, unsigned int groups, pid_t pid);
extern int mnl_socket_close(struct mnl_socket *nl);
extern ssize_t mnl_socket_sendto(const struct mnl_socket *nl, const void *req, size_t siz);
extern ssize_t mnl_socket_recvfrom(const struct mnl_socket *nl, void *buf, size_t siz);

libnetfilter_conntrack则主要是对获取的结果进行解析,比如拿出源地址、协议簇信息

/* conntrack attributes */
enum nf_conntrack_attr {ATTR_ORIG_IPV4_SRC = 0,         /* u32 bits */ATTR_IPV4_SRC = ATTR_ORIG_IPV4_SRC, /* alias */ATTR_ORIG_IPV4_DST,         /* u32 bits */ATTR_IPV4_DST = ATTR_ORIG_IPV4_DST, /* alias */ATTR_REPL_IPV4_SRC,         /* u32 bits */ATTR_REPL_IPV4_DST,         /* u32 bits */ATTR_ORIG_IPV6_SRC = 4,         /* u128 bits */ATTR_IPV6_SRC = ATTR_ORIG_IPV6_SRC, /* alias */ATTR_ORIG_IPV6_DST,         /* u128 bits */ATTR_IPV6_DST = ATTR_ORIG_IPV6_DST, /* alias */ATTR_REPL_IPV6_SRC,         /* u128 bits */ATTR_REPL_IPV6_DST,         /* u128 bits */ATTR_ORIG_PORT_SRC = 8,         /* u16 bits */ATTR_PORT_SRC = ATTR_ORIG_PORT_SRC, /* alias */ATTR_ORIG_PORT_DST,         /* u16 bits */ATTR_PORT_DST = ATTR_ORIG_PORT_DST, /* alias */ATTR_REPL_PORT_SRC,         /* u16 bits */ATTR_REPL_PORT_DST,         /* u16 bits */ATTR_ICMP_TYPE = 12,            /* u8 bits */ATTR_ICMP_CODE,             /* u8 bits */ATTR_ICMP_ID,               /* u16 bits */ATTR_ORIG_L3PROTO,          /* u8 bits */ATTR_L3PROTO = ATTR_ORIG_L3PROTO,   /* alias */ATTR_REPL_L3PROTO = 16,         /* u8 bits */ATTR_ORIG_L4PROTO,          /* u8 bits */ATTR_L4PROTO = ATTR_ORIG_L4PROTO,   /* alias */ATTR_REPL_L4PROTO,          /* u8 bits */ATTR_TCP_STATE,             /* u8 bits */ATTR_SNAT_IPV4 = 20,            /* u32 bits */ATTR_DNAT_IPV4,             /* u32 bits */ATTR_SNAT_PORT,             /* u16 bits */ATTR_DNAT_PORT,             /* u16 bits */ATTR_TIMEOUT = 24,          /* u32 bits */ATTR_MARK,              /* u32 bits */ATTR_ORIG_COUNTER_PACKETS,      /* u64 bits */ATTR_REPL_COUNTER_PACKETS,      /* u64 bits */ATTR_ORIG_COUNTER_BYTES = 28,       /* u64 bits */ATTR_REPL_COUNTER_BYTES,        /* u64 bits */ATTR_USE,               /* u32 bits */ATTR_ID,                /* u32 bits */ATTR_STATUS = 32,           /* u32 bits  */ATTR_TCP_FLAGS_ORIG,            /* u8 bits */ATTR_TCP_FLAGS_REPL,            /* u8 bits */ATTR_TCP_MASK_ORIG,         /* u8 bits */ATTR_TCP_MASK_REPL = 36,        /* u8 bits */ATTR_MASTER_IPV4_SRC,           /* u32 bits */ATTR_MASTER_IPV4_DST,           /* u32 bits */ATTR_MASTER_IPV6_SRC,           /* u128 bits */ATTR_MASTER_IPV6_DST = 40,      /* u128 bits */ATTR_MASTER_PORT_SRC,           /* u16 bits */ATTR_MASTER_PORT_DST,           /* u16 bits */ATTR_MASTER_L3PROTO,            /* u8 bits */ATTR_MASTER_L4PROTO = 44,       /* u8 bits */ATTR_SECMARK,               /* u32 bits */ATTR_ORIG_NAT_SEQ_CORRECTION_POS,   /* u32 bits */ATTR_ORIG_NAT_SEQ_OFFSET_BEFORE,    /* u32 bits */ATTR_ORIG_NAT_SEQ_OFFSET_AFTER = 48,    /* u32 bits */ATTR_REPL_NAT_SEQ_CORRECTION_POS,   /* u32 bits */ATTR_REPL_NAT_SEQ_OFFSET_BEFORE,    /* u32 bits */ATTR_REPL_NAT_SEQ_OFFSET_AFTER,     /* u32 bits */ATTR_SCTP_STATE = 52,           /* u8 bits */ATTR_SCTP_VTAG_ORIG,            /* u32 bits */ATTR_SCTP_VTAG_REPL,            /* u32 bits */ATTR_HELPER_NAME,           /* string (30 bytes max) */ATTR_DCCP_STATE = 56,           /* u8 bits */ATTR_DCCP_ROLE,             /* u8 bits */ATTR_DCCP_HANDSHAKE_SEQ,        /* u64 bits */ATTR_TCP_WSCALE_ORIG,           /* u8 bits */ATTR_TCP_WSCALE_REPL = 60,      /* u8 bits */ATTR_ZONE,              /* u16 bits */ATTR_SECCTX,                /* string */ATTR_TIMESTAMP_START,           /* u64 bits, linux >= 2.6.38 */ATTR_TIMESTAMP_STOP = 64,       /* u64 bits, linux >= 2.6.38 */ATTR_HELPER_INFO,           /* variable length */ATTR_CONNLABELS,            /* variable length */ATTR_CONNLABELS_MASK,           /* variable length */ATTR_ORIG_ZONE,             /* u16 bits */ATTR_REPL_ZONE,             /* u16 bits */ATTR_SNAT_IPV6,             /* u128 bits */ATTR_DNAT_IPV6,             /* u128 bits */ATTR_SYNPROXY_ISN,          /* u32 bits */ATTR_SYNPROXY_ITS,          /* u32 bits */ATTR_SYNPROXY_TSOFF,            /* u32 bits */ATTR_MAX
};

3. 例子

以下例子为打印TCP当前连接情况
main函数主要就是创建一个netlink套接字,发送请求IPCTNL_MSG_CT_GET获取整个conntrack表信息
最终结果接收在buf中,使用mnl_cb_run进行循环解析。

int main(void)
{struct mnl_socket *nl;struct nlmsghdr *nlh;struct nfgenmsg *nfh;char buf[MNL_SOCKET_BUFFER_SIZE];unsigned int seq, portid;int ret;nl = mnl_socket_open(NETLINK_NETFILTER);if (nl == NULL) {perror("mnl_socket_open");exit(EXIT_FAILURE);}   if (mnl_socket_bind(nl, 0, MNL_SOCKET_AUTOPID) < 0) {perror("mnl_socket_bind");exit(EXIT_FAILURE);}   portid = mnl_socket_get_portid(nl);nlh = mnl_nlmsg_put_header(buf);nlh->nlmsg_type = (NFNL_SUBSYS_CTNETLINK << 8) | IPCTNL_MSG_CT_GET;nlh->nlmsg_flags = NLM_F_REQUEST | NLM_F_DUMP;nlh->nlmsg_seq = seq = time(NULL);nfh = mnl_nlmsg_put_extra_header(nlh, sizeof(struct nfgenmsg));nfh->nfgen_family = AF_INET;nfh->version = NFNETLINK_V0;nfh->res_id = 0;ret = mnl_socket_sendto(nl, nlh, nlh->nlmsg_len);if (ret == -1) {perror("mnl_socket_recvfrom");exit(EXIT_FAILURE);}ret = mnl_socket_recvfrom(nl, buf, sizeof(buf));while (ret > 0) {ret = mnl_cb_run(buf, ret, seq, portid, data_cb, NULL);if (ret <= MNL_CB_STOP) {break;}ret = mnl_socket_recvfrom(nl, buf, sizeof(buf));}if (ret == -1) {perror("mnl_socket_recvfrom");exit(EXIT_FAILURE);}mnl_socket_close(nl);return 0;
}

以下为 回调函数的实现,在本例子中,则筛选出TCP连接进行展示

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <time.h>
#include <arpa/inet.h>#include <libmnl/libmnl.h>
#include <libnetfilter_conntrack/libnetfilter_conntrack.h>static int data_cb(const struct nlmsghdr *nlh, void *data)
{struct nf_conntrack *ct;char buf[4096];ct = nfct_new();if (ct == NULL) {return MNL_CB_OK;}   nfct_nlmsg_parse(nlh, ct);switch (nfct_get_attr_u8(ct, ATTR_ORIG_L4PROTO)) {case IPPROTO_TCP:nfct_snprintf(buf, sizeof(buf), ct, NFCT_T_UNKNOWN, NFCT_O_DEFAULT, 0); printf("%s\n", buf);break;}   nfct_destroy(ct);return MNL_CB_OK;
}

运行结果涉及本机一些地址,就不展示了,结果与 /proc/net/nf_conntrack一致,但到10w记录的环境下,并不会有巨大的开销。

4. 总结

只要不设置notrack标识的连接,就可以通过 nf_conntrack进行获取连接数;
而使用libnml+libnetfilter_conntrack的netlink套接字的方式,比直接cat文件速度快很多;
查看了官方手册,发现libnetfilter_conntrack不仅可解析conntrack表,还能够进行监控、修改等高级操作,功能十分强大!

参考文章:
[1] https://en.wikipedia.org/wiki/Netfilter
[2] https://www.netfilter.org/projects/libnetfilter_conntrack/index.html

这篇关于Linux下快速解析nf_conntrack的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/672051

相关文章

Linux中压缩、网络传输与系统监控工具的使用完整指南

《Linux中压缩、网络传输与系统监控工具的使用完整指南》在Linux系统管理中,压缩与传输工具是数据备份和远程协作的桥梁,而系统监控工具则是保障服务器稳定运行的眼睛,下面小编就来和大家详细介绍一下它... 目录引言一、压缩与解压:数据存储与传输的优化核心1. zip/unzip:通用压缩格式的便捷操作2.

深度解析Java DTO(最新推荐)

《深度解析JavaDTO(最新推荐)》DTO(DataTransferObject)是一种用于在不同层(如Controller层、Service层)之间传输数据的对象设计模式,其核心目的是封装数据,... 目录一、什么是DTO?DTO的核心特点:二、为什么需要DTO?(对比Entity)三、实际应用场景解析

深度解析Java项目中包和包之间的联系

《深度解析Java项目中包和包之间的联系》文章浏览阅读850次,点赞13次,收藏8次。本文详细介绍了Java分层架构中的几个关键包:DTO、Controller、Service和Mapper。_jav... 目录前言一、各大包1.DTO1.1、DTO的核心用途1.2. DTO与实体类(Entity)的区别1

Java中的雪花算法Snowflake解析与实践技巧

《Java中的雪花算法Snowflake解析与实践技巧》本文解析了雪花算法的原理、Java实现及生产实践,涵盖ID结构、位运算技巧、时钟回拨处理、WorkerId分配等关键点,并探讨了百度UidGen... 目录一、雪花算法核心原理1.1 算法起源1.2 ID结构详解1.3 核心特性二、Java实现解析2.

Linux中SSH服务配置的全面指南

《Linux中SSH服务配置的全面指南》作为网络安全工程师,SSH(SecureShell)服务的安全配置是我们日常工作中不可忽视的重要环节,本文将从基础配置到高级安全加固,全面解析SSH服务的各项参... 目录概述基础配置详解端口与监听设置主机密钥配置认证机制强化禁用密码认证禁止root直接登录实现双因素

使用Python绘制3D堆叠条形图全解析

《使用Python绘制3D堆叠条形图全解析》在数据可视化的工具箱里,3D图表总能带来眼前一亮的效果,本文就来和大家聊聊如何使用Python实现绘制3D堆叠条形图,感兴趣的小伙伴可以了解下... 目录为什么选择 3D 堆叠条形图代码实现:从数据到 3D 世界的搭建核心代码逐行解析细节优化应用场景:3D 堆叠图

深度解析Python装饰器常见用法与进阶技巧

《深度解析Python装饰器常见用法与进阶技巧》Python装饰器(Decorator)是提升代码可读性与复用性的强大工具,本文将深入解析Python装饰器的原理,常见用法,进阶技巧与最佳实践,希望可... 目录装饰器的基本原理函数装饰器的常见用法带参数的装饰器类装饰器与方法装饰器装饰器的嵌套与组合进阶技巧

解析C++11 static_assert及与Boost库的关联从入门到精通

《解析C++11static_assert及与Boost库的关联从入门到精通》static_assert是C++中强大的编译时验证工具,它能够在编译阶段拦截不符合预期的类型或值,增强代码的健壮性,通... 目录一、背景知识:传统断言方法的局限性1.1 assert宏1.2 #error指令1.3 第三方解决

全面解析MySQL索引长度限制问题与解决方案

《全面解析MySQL索引长度限制问题与解决方案》MySQL对索引长度设限是为了保持高效的数据检索性能,这个限制不是MySQL的缺陷,而是数据库设计中的权衡结果,下面我们就来看看如何解决这一问题吧... 目录引言:为什么会有索引键长度问题?一、问题根源深度解析mysql索引长度限制原理实际场景示例二、五大解决

深度解析Spring Boot拦截器Interceptor与过滤器Filter的区别与实战指南

《深度解析SpringBoot拦截器Interceptor与过滤器Filter的区别与实战指南》本文深度解析SpringBoot中拦截器与过滤器的区别,涵盖执行顺序、依赖关系、异常处理等核心差异,并... 目录Spring Boot拦截器(Interceptor)与过滤器(Filter)深度解析:区别、实现