Linux下快速解析nf_conntrack

2024-02-02 21:38
文章标签 linux 快速 解析 nf conntrack

本文主要是介绍Linux下快速解析nf_conntrack,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1. 背景

回顾了项目需求是系统的统计tcp连接数;
于是想到了 nf_conntrack 这个Linux内核提供的记录和跟踪连接状态的功能;
然后写了个程序解析 /proc/net/nf_conntrack这个映射文件,后来悲剧就发生了,当conntrack表记录变增加到1w以上之后,解析速度急速下降,到了10w规模后,解析耗时几十秒都不能完成,,,
终于后来翻到了netfilter的老巢,发现了解决方法:libnml、libnetfilter_conntrack

2. 使用

核心原理是通过netlink套接字的方式,与内核交互,查询得到结果
libmnl基本方法:

extern struct mnl_socket *mnl_socket_open(int bus);
extern int mnl_socket_bind(struct mnl_socket *nl, unsigned int groups, pid_t pid);
extern int mnl_socket_close(struct mnl_socket *nl);
extern ssize_t mnl_socket_sendto(const struct mnl_socket *nl, const void *req, size_t siz);
extern ssize_t mnl_socket_recvfrom(const struct mnl_socket *nl, void *buf, size_t siz);

libnetfilter_conntrack则主要是对获取的结果进行解析,比如拿出源地址、协议簇信息

/* conntrack attributes */
enum nf_conntrack_attr {ATTR_ORIG_IPV4_SRC = 0,         /* u32 bits */ATTR_IPV4_SRC = ATTR_ORIG_IPV4_SRC, /* alias */ATTR_ORIG_IPV4_DST,         /* u32 bits */ATTR_IPV4_DST = ATTR_ORIG_IPV4_DST, /* alias */ATTR_REPL_IPV4_SRC,         /* u32 bits */ATTR_REPL_IPV4_DST,         /* u32 bits */ATTR_ORIG_IPV6_SRC = 4,         /* u128 bits */ATTR_IPV6_SRC = ATTR_ORIG_IPV6_SRC, /* alias */ATTR_ORIG_IPV6_DST,         /* u128 bits */ATTR_IPV6_DST = ATTR_ORIG_IPV6_DST, /* alias */ATTR_REPL_IPV6_SRC,         /* u128 bits */ATTR_REPL_IPV6_DST,         /* u128 bits */ATTR_ORIG_PORT_SRC = 8,         /* u16 bits */ATTR_PORT_SRC = ATTR_ORIG_PORT_SRC, /* alias */ATTR_ORIG_PORT_DST,         /* u16 bits */ATTR_PORT_DST = ATTR_ORIG_PORT_DST, /* alias */ATTR_REPL_PORT_SRC,         /* u16 bits */ATTR_REPL_PORT_DST,         /* u16 bits */ATTR_ICMP_TYPE = 12,            /* u8 bits */ATTR_ICMP_CODE,             /* u8 bits */ATTR_ICMP_ID,               /* u16 bits */ATTR_ORIG_L3PROTO,          /* u8 bits */ATTR_L3PROTO = ATTR_ORIG_L3PROTO,   /* alias */ATTR_REPL_L3PROTO = 16,         /* u8 bits */ATTR_ORIG_L4PROTO,          /* u8 bits */ATTR_L4PROTO = ATTR_ORIG_L4PROTO,   /* alias */ATTR_REPL_L4PROTO,          /* u8 bits */ATTR_TCP_STATE,             /* u8 bits */ATTR_SNAT_IPV4 = 20,            /* u32 bits */ATTR_DNAT_IPV4,             /* u32 bits */ATTR_SNAT_PORT,             /* u16 bits */ATTR_DNAT_PORT,             /* u16 bits */ATTR_TIMEOUT = 24,          /* u32 bits */ATTR_MARK,              /* u32 bits */ATTR_ORIG_COUNTER_PACKETS,      /* u64 bits */ATTR_REPL_COUNTER_PACKETS,      /* u64 bits */ATTR_ORIG_COUNTER_BYTES = 28,       /* u64 bits */ATTR_REPL_COUNTER_BYTES,        /* u64 bits */ATTR_USE,               /* u32 bits */ATTR_ID,                /* u32 bits */ATTR_STATUS = 32,           /* u32 bits  */ATTR_TCP_FLAGS_ORIG,            /* u8 bits */ATTR_TCP_FLAGS_REPL,            /* u8 bits */ATTR_TCP_MASK_ORIG,         /* u8 bits */ATTR_TCP_MASK_REPL = 36,        /* u8 bits */ATTR_MASTER_IPV4_SRC,           /* u32 bits */ATTR_MASTER_IPV4_DST,           /* u32 bits */ATTR_MASTER_IPV6_SRC,           /* u128 bits */ATTR_MASTER_IPV6_DST = 40,      /* u128 bits */ATTR_MASTER_PORT_SRC,           /* u16 bits */ATTR_MASTER_PORT_DST,           /* u16 bits */ATTR_MASTER_L3PROTO,            /* u8 bits */ATTR_MASTER_L4PROTO = 44,       /* u8 bits */ATTR_SECMARK,               /* u32 bits */ATTR_ORIG_NAT_SEQ_CORRECTION_POS,   /* u32 bits */ATTR_ORIG_NAT_SEQ_OFFSET_BEFORE,    /* u32 bits */ATTR_ORIG_NAT_SEQ_OFFSET_AFTER = 48,    /* u32 bits */ATTR_REPL_NAT_SEQ_CORRECTION_POS,   /* u32 bits */ATTR_REPL_NAT_SEQ_OFFSET_BEFORE,    /* u32 bits */ATTR_REPL_NAT_SEQ_OFFSET_AFTER,     /* u32 bits */ATTR_SCTP_STATE = 52,           /* u8 bits */ATTR_SCTP_VTAG_ORIG,            /* u32 bits */ATTR_SCTP_VTAG_REPL,            /* u32 bits */ATTR_HELPER_NAME,           /* string (30 bytes max) */ATTR_DCCP_STATE = 56,           /* u8 bits */ATTR_DCCP_ROLE,             /* u8 bits */ATTR_DCCP_HANDSHAKE_SEQ,        /* u64 bits */ATTR_TCP_WSCALE_ORIG,           /* u8 bits */ATTR_TCP_WSCALE_REPL = 60,      /* u8 bits */ATTR_ZONE,              /* u16 bits */ATTR_SECCTX,                /* string */ATTR_TIMESTAMP_START,           /* u64 bits, linux >= 2.6.38 */ATTR_TIMESTAMP_STOP = 64,       /* u64 bits, linux >= 2.6.38 */ATTR_HELPER_INFO,           /* variable length */ATTR_CONNLABELS,            /* variable length */ATTR_CONNLABELS_MASK,           /* variable length */ATTR_ORIG_ZONE,             /* u16 bits */ATTR_REPL_ZONE,             /* u16 bits */ATTR_SNAT_IPV6,             /* u128 bits */ATTR_DNAT_IPV6,             /* u128 bits */ATTR_SYNPROXY_ISN,          /* u32 bits */ATTR_SYNPROXY_ITS,          /* u32 bits */ATTR_SYNPROXY_TSOFF,            /* u32 bits */ATTR_MAX
};

3. 例子

以下例子为打印TCP当前连接情况
main函数主要就是创建一个netlink套接字,发送请求IPCTNL_MSG_CT_GET获取整个conntrack表信息
最终结果接收在buf中,使用mnl_cb_run进行循环解析。

int main(void)
{struct mnl_socket *nl;struct nlmsghdr *nlh;struct nfgenmsg *nfh;char buf[MNL_SOCKET_BUFFER_SIZE];unsigned int seq, portid;int ret;nl = mnl_socket_open(NETLINK_NETFILTER);if (nl == NULL) {perror("mnl_socket_open");exit(EXIT_FAILURE);}   if (mnl_socket_bind(nl, 0, MNL_SOCKET_AUTOPID) < 0) {perror("mnl_socket_bind");exit(EXIT_FAILURE);}   portid = mnl_socket_get_portid(nl);nlh = mnl_nlmsg_put_header(buf);nlh->nlmsg_type = (NFNL_SUBSYS_CTNETLINK << 8) | IPCTNL_MSG_CT_GET;nlh->nlmsg_flags = NLM_F_REQUEST | NLM_F_DUMP;nlh->nlmsg_seq = seq = time(NULL);nfh = mnl_nlmsg_put_extra_header(nlh, sizeof(struct nfgenmsg));nfh->nfgen_family = AF_INET;nfh->version = NFNETLINK_V0;nfh->res_id = 0;ret = mnl_socket_sendto(nl, nlh, nlh->nlmsg_len);if (ret == -1) {perror("mnl_socket_recvfrom");exit(EXIT_FAILURE);}ret = mnl_socket_recvfrom(nl, buf, sizeof(buf));while (ret > 0) {ret = mnl_cb_run(buf, ret, seq, portid, data_cb, NULL);if (ret <= MNL_CB_STOP) {break;}ret = mnl_socket_recvfrom(nl, buf, sizeof(buf));}if (ret == -1) {perror("mnl_socket_recvfrom");exit(EXIT_FAILURE);}mnl_socket_close(nl);return 0;
}

以下为 回调函数的实现,在本例子中,则筛选出TCP连接进行展示

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <time.h>
#include <arpa/inet.h>#include <libmnl/libmnl.h>
#include <libnetfilter_conntrack/libnetfilter_conntrack.h>static int data_cb(const struct nlmsghdr *nlh, void *data)
{struct nf_conntrack *ct;char buf[4096];ct = nfct_new();if (ct == NULL) {return MNL_CB_OK;}   nfct_nlmsg_parse(nlh, ct);switch (nfct_get_attr_u8(ct, ATTR_ORIG_L4PROTO)) {case IPPROTO_TCP:nfct_snprintf(buf, sizeof(buf), ct, NFCT_T_UNKNOWN, NFCT_O_DEFAULT, 0); printf("%s\n", buf);break;}   nfct_destroy(ct);return MNL_CB_OK;
}

运行结果涉及本机一些地址,就不展示了,结果与 /proc/net/nf_conntrack一致,但到10w记录的环境下,并不会有巨大的开销。

4. 总结

只要不设置notrack标识的连接,就可以通过 nf_conntrack进行获取连接数;
而使用libnml+libnetfilter_conntrack的netlink套接字的方式,比直接cat文件速度快很多;
查看了官方手册,发现libnetfilter_conntrack不仅可解析conntrack表,还能够进行监控、修改等高级操作,功能十分强大!

参考文章:
[1] https://en.wikipedia.org/wiki/Netfilter
[2] https://www.netfilter.org/projects/libnetfilter_conntrack/index.html

这篇关于Linux下快速解析nf_conntrack的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/672051

相关文章

Golang HashMap实现原理解析

《GolangHashMap实现原理解析》HashMap是一种基于哈希表实现的键值对存储结构,它通过哈希函数将键映射到数组的索引位置,支持高效的插入、查找和删除操作,:本文主要介绍GolangH... 目录HashMap是一种基于哈希表实现的键值对存储结构,它通过哈希函数将键映射到数组的索引位置,支持

Python使用getopt处理命令行参数示例解析(最佳实践)

《Python使用getopt处理命令行参数示例解析(最佳实践)》getopt模块是Python标准库中一个简单但强大的命令行参数处理工具,它特别适合那些需要快速实现基本命令行参数解析的场景,或者需要... 目录为什么需要处理命令行参数?getopt模块基础实际应用示例与其他参数处理方式的比较常见问http

Python利用ElementTree实现快速解析XML文件

《Python利用ElementTree实现快速解析XML文件》ElementTree是Python标准库的一部分,而且是Python标准库中用于解析和操作XML数据的模块,下面小编就来和大家详细讲讲... 目录一、XML文件解析到底有多重要二、ElementTree快速入门1. 加载XML的两种方式2.

Java的栈与队列实现代码解析

《Java的栈与队列实现代码解析》栈是常见的线性数据结构,栈的特点是以先进后出的形式,后进先出,先进后出,分为栈底和栈顶,栈应用于内存的分配,表达式求值,存储临时的数据和方法的调用等,本文给大家介绍J... 目录栈的概念(Stack)栈的实现代码队列(Queue)模拟实现队列(双链表实现)循环队列(循环数组

java解析jwt中的payload的用法

《java解析jwt中的payload的用法》:本文主要介绍java解析jwt中的payload的用法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Java解析jwt中的payload1. 使用 jjwt 库步骤 1:添加依赖步骤 2:解析 JWT2. 使用 N

Python中__init__方法使用的深度解析

《Python中__init__方法使用的深度解析》在Python的面向对象编程(OOP)体系中,__init__方法如同建造房屋时的奠基仪式——它定义了对象诞生时的初始状态,下面我们就来深入了解下_... 目录一、__init__的基因图谱二、初始化过程的魔法时刻继承链中的初始化顺序self参数的奥秘默认

Linux命令之firewalld的用法

《Linux命令之firewalld的用法》:本文主要介绍Linux命令之firewalld的用法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录linux命令之firewalld1、程序包2、启动firewalld3、配置文件4、firewalld规则定义的九大

Linux之计划任务和调度命令at/cron详解

《Linux之计划任务和调度命令at/cron详解》:本文主要介绍Linux之计划任务和调度命令at/cron的使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录linux计划任务和调度命令at/cron一、计划任务二、命令{at}介绍三、命令语法及功能 :at

Linux下如何使用C++获取硬件信息

《Linux下如何使用C++获取硬件信息》这篇文章主要为大家详细介绍了如何使用C++实现获取CPU,主板,磁盘,BIOS信息等硬件信息,文中的示例代码讲解详细,感兴趣的小伙伴可以了解下... 目录方法获取CPU信息:读取"/proc/cpuinfo"文件获取磁盘信息:读取"/proc/diskstats"文

Java 正则表达式URL 匹配与源码全解析

《Java正则表达式URL匹配与源码全解析》在Web应用开发中,我们经常需要对URL进行格式验证,今天我们结合Java的Pattern和Matcher类,深入理解正则表达式在实际应用中... 目录1.正则表达式分解:2. 添加域名匹配 (2)3. 添加路径和查询参数匹配 (3) 4. 最终优化版本5.设计思