MAP(Mean Average Precision):

2024-02-02 14:38
文章标签 precision map mean average

本文主要是介绍MAP(Mean Average Precision):,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!



MAP(Mean Average Precision):

    单个主题的平均准确率是每篇相关文档检索出后的准确率的平均值。主集合的平均准确率(MAP)是每个主题的平均准确率的平均值。MAP 是反映系统在全部相关文档上性能的单值指标。系统检索出来的相关文档越靠前(rank 越高),MAP就可能越高。如果系统没有返回相关文档,则准确率默认为0。
例如:假设有两个主题,主题1有4个相关网页,主题2有5个相关网页。某系统对于主题1检索出4个相关网页,其rank分别为1, 2, 4, 7;对于主题2检索出3个相关网页,其rank分别为1,3,5。对于主题1,平均准确率为(1/1+2/2+3/4+4/7)/4=0.83。对于主题2,平均准确率为(1/1+2/3+3/5+0+0)/5=0.45。则MAP= (0.83+0.45)/2=0.64。”

NDCG(Normalized Discounted Cumulative Gain):

计算相对复杂。对于排在结位置n处的NDCG的计算公式如下图所示:


在MAP中,四个文档和query要么相关,要么不相关,也就是相关度非0即1。NDCG中改进了下,相关度分成从0到r的r+1的等级(r可设定)。当取r=5时,等级设定如下图所示:

(应该还有r=1那一级,原文档有误,不过这里不影响理解)

例如现在有一个query={abc},返回下图左列的Ranked List(URL),当假设用户的选择与排序结果无关(即每一级都等概率被选中),则生成的累计增益值如下图最右列所示:


考虑到一般情况下用户会优先点选排在前面的搜索结果,所以应该引入一个折算因子(discounting factor): log(2)/log(1+rank)。这时将获得DCG值(Discounted Cumulative Gain)如下如所示:


最后,为了使不同等级上的搜索结果的得分值容易比较,需要将DCG值归一化的到NDCG值。操作如下图所示,首先计算理想返回结果List的DCG值:


然后用DCG/MaxDCG就得到NDCG值,如下图所示:


这篇关于MAP(Mean Average Precision):的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/671019

相关文章

Collection List Set Map的区别和联系

Collection List Set Map的区别和联系 这些都代表了Java中的集合,这里主要从其元素是否有序,是否可重复来进行区别记忆,以便恰当地使用,当然还存在同步方面的差异,见上一篇相关文章。 有序否 允许元素重复否 Collection 否 是 List 是 是 Set AbstractSet 否

Map

Map 是 Java 中用于存储键值对的集合接口。以下是对 Map 的详细介绍: 特点 键值对存储:每个元素包含一个键和一个值。 键唯一:键不能重复,但值可以重复。 无序/有序:根据具体实现,键值对的顺序可能无序(如 HashMap)或有序(如 TreeMap、LinkedHashMap)。 主要实现类 HashMap 基于哈希表,无序存储。 允许一个 null 键和多个 null 值。

Java中集合类Set、List和Map的区别

Java中的集合包括三大类,它们是Set、List和Map,它们都处于java.util包中,Set、List和Map都是接口,它们有各自的实现类。Set的实现类主要有HashSet和TreeSet,List的实现类主要有ArrayList,Map的实现类主要有HashMap和TreeMap。那么它们有什么区别呢? Set中的对象不按特定方式排序,并且没有重复对象。但它的有些实现类能对集合中的对

C++数据结构重要知识点(5)(哈希表、unordered_map和unordered_set封装)

1.哈希思想和哈希表 (1)哈希思想和哈希表的区别 哈希(散列、hash)是一种映射思想,本质上是值和值建立映射关系,key-value就使用了这种思想。哈希表(散列表,数据结构),主要功能是值和存储位置建立映射关系,它通过key-value模型中的key来定位数组的下标,将value存进该位置。 哈希思想和哈希表数据结构这两个概念要分清,哈希是哈希表的核心思想。 (2)unordered

【C++STL(十四)】一个哈希桶简单模拟实现unordered_map/set

目录 前言 一、改造哈希桶 改造结点类 改造主体  模板参数改造  迭代器(重点) 改造完整哈希桶 unordered_map模拟实现 unordered_set模拟实现 前言 前面的文章都有说unordered_map/set的底层结构就是哈希表,严格来说是哈希桶,那么接下来我们就尝试使用同一个哈希桶来模拟实现一下。整体的逻辑和一棵红黑树封装map/set类似,所以

Java中Map取值转String Null值处理

Map<String, Object> 直接取值转String String value = (String)map.get("key") 当map.get(“key”)为Null值时会报错。 使用String类的valueOf静态方法可以解决这个问题 String value = String.valueOf(map.get("key"))

Creating OpenAI Gym Environment from Map Data

题意:从地图数据创建 OpenAI Gym 环境 问题背景: I am just starting out with reinforcement learning and trying to create a custom environment with OpenAI gym. However, I am stumped with trying to create an enviro

【Java编程的逻辑】Map和Set

HashMap Map有键和值的概念。一个键映射到一个值,Map按照键存储和访问值,键不能重复。 HashMap实现了Map接口。 基本原理 HashMap的基本实现原理:内部有一个哈希表,即数组table,每个元素table[i]指向一个单向链表,根据键存取值,用键算出hash值,取模得到数组中的索引位置index,然后操作table[index]指向的单向链表。 存取的时候依据键的

RDD的map和flatMap

在 Apache Spark 中,map 和 flatMap 是 RDD(弹性分布式数据集)中最常用的转换操作之一。 map 假设你有一个包含整数的 RDD,你想要计算每个元素的平方。 from pyspark import SparkContextsc = SparkContext(appName="MapExample")# 创建一个包含整数的 RDDnumbers = sc.para

【python 多进程传参】pool.map() 函数传多参数

无意中发现了一个巨牛的人工智能教程,忍不住分享一下给大家。教程不仅是零基础,通俗易懂,而且非常风趣幽默,像看小说一样!觉得太牛了,所以分享给大家。点这里可以跳转到教程。人工智能教程 一、背景介绍 相信很多人都用过,pool.map()函数,这个函数,有两个参数可以传,第一个参数传的是函数,第二个参数传的是数据列表。 那么怎么在第二个数据列表,多传几个参数呢,方法是通过对有多个参数的方法进行封装