LambdaMART的源码分析:一(MART:回归树)

2024-02-02 14:38

本文主要是介绍LambdaMART的源码分析:一(MART:回归树),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!


LambdaMART的源码分析:一(MART:回归树)
508人阅读 评论(0) 收藏 举报
本文章已收录于:
分类:
作者同类文章 X
    参考论文:
    From RankNet to LambdaRank to LambdaMART: An Overview(公式主要引用这个)
    GREEDY FUNCTION APPROXIMATION: A GRADIENT BOOSTING MACHINE (MART的思想)
    Adapting boosting for information retrieval measures


    回归树:
    1.思想(参考李航的《统计学习方法》的5.51节CART生成)
    注意:这里的回归树,每次split的时候,都是为了选择最优的feature和切分点, 这里的切分点,只会按照该feature,把数据集一分为二
    2.回归树实现(ciir.umass.edu.learning.tree.RegressionTree 二叉树)
    参数介绍:
    int nLeaves //控制分裂的次数, 这个次数是按照节点来算的,而不是按照层数来计算的,例如,2个叶子的时候,分裂1次;3个叶子的时候,分裂2次;4个叶子的时候,分裂3次。N个叶子,分裂N-1次。
    DataPoint[] trainingSamples //训练的数据点
    double[] labels //这里的lables就是y值,在lambdaMART里为lambda值
    FeatureHistogram hist,
    int minLeafSupport //控制分裂的次数,如果某个节点所包含的训练数据小于2* minLeafSupport ,则该节点不再分裂。

    fit方法
    根据输入的数据以及lable值,生成回归树。


    辅助类:
    ciir.umass.edu.learning.tree.FeatureHistogram来选择每次split时的最优feature和最优划分点

    construct方法:
    sum[i][j] : 指定feature i 的所有值(训练数据中出现的值),每个j代表一个训练数据中出现的一个值,
    sum[i][j]的值为feature i 的所有小于某个指定值(该值由threshold[j]提供)的训练数据                                datapoint的label(该算法里为lambda)之和。
    count[i][j]:  
    指定feature i 的所有值(训练数据中出现的值),每个j代表一个训练数据中出现的一个值,
    sum[i][j]的值为feature i 的所有小于某个指定值(该值由threshold[j]提供)的训练数据                               datapoint的总数。

    update方法:
    用新的label更新sum[i][j]


    findBestSplit方法:
    a.选取feature作为划分的备选(可全选,可选部分)。
    b.选取最优feature和最优划分点
    计算每个feature的每个划分点,
       double S = sumLeft * sumLeft / countLeft + sumRight * sumRight / countRight;
    最小的S即为最优feature和最优划分点s(该s是feature的具体值)。
    sumLeft是该节点下某个feature的值小于指定值(备选s)的所有训练数据的lambad之和。
    countLeft是 该节点下某个feature的值小于指定值(备选s)的所有训练数据的总数。
    sumRight 是该节点下某个feature的值大于等于指定值(备选s)的所有训练数据的lambad之和。
    countRight是该节点下某个feature的值大于等于指定值(备选s)的所有训练数据的总数。

    这里非常不理解,参考CART的资料,均不是按照这种方式来分裂的,希望有朋友能够帮忙解释一下
    int countLeft = count[i][t];
    int countRight = totalCount - countLeft;
    double sumLeft = sum[i][t];
    double sumRight = sumResponse - sumLeft;
    double S = sumLeft * sumLeft / countLeft + sumRight * sumRight / countRight;
    if(cfg.S < S)
    {
    cfg.S = S;
    cfg.featureIdx = i;
    cfg.thresholdIdx = t;
    }

    通过学习LambdaMART的思路,构建树的时候,输入为(xi,lambdai),其中lambdai代表着对xi的评分(影响排序结果,是增大还是减少)。
    最好的划分点,就是把增大的划分到一起(全部为正值,相加结果为sumA),减少的划分到一起(全部为负值,相加结果为sumb).
    此时的sumA*sumA/countA+sumB*sumB/countB为最大。
    因此,这里的S的含义为:该划分点尽量把正值和负值区分开。 正值表示:后续评分调大;负值表示:后续评分调小;


    lambdai就是si从newTree中获取的值,表示si的值如何调整才能满足C最大(类似梯度)。
    C表示的是排序后的NDCG,求其最大值。

    Sim=Sim-1+lambdai
    Sim-1为经过m-1棵树之后,i的评分;
    Sim为经过m棵树之后,i的评分;
    lambdai就是第m棵树对i的影响,决定了评分是增大,还是减少

    这篇关于LambdaMART的源码分析:一(MART:回归树)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



    http://www.chinasem.cn/article/671018

    相关文章

    Springboot中分析SQL性能的两种方式详解

    《Springboot中分析SQL性能的两种方式详解》文章介绍了SQL性能分析的两种方式:MyBatis-Plus性能分析插件和p6spy框架,MyBatis-Plus插件配置简单,适用于开发和测试环... 目录SQL性能分析的两种方式:功能介绍实现方式:实现步骤:SQL性能分析的两种方式:功能介绍记录

    最长公共子序列问题的深度分析与Java实现方式

    《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动

    C#使用DeepSeek API实现自然语言处理,文本分类和情感分析

    《C#使用DeepSeekAPI实现自然语言处理,文本分类和情感分析》在C#中使用DeepSeekAPI可以实现多种功能,例如自然语言处理、文本分类、情感分析等,本文主要为大家介绍了具体实现步骤,... 目录准备工作文本生成文本分类问答系统代码生成翻译功能文本摘要文本校对图像描述生成总结在C#中使用Deep

    Go中sync.Once源码的深度讲解

    《Go中sync.Once源码的深度讲解》sync.Once是Go语言标准库中的一个同步原语,用于确保某个操作只执行一次,本文将从源码出发为大家详细介绍一下sync.Once的具体使用,x希望对大家有... 目录概念简单示例源码解读总结概念sync.Once是Go语言标准库中的一个同步原语,用于确保某个操

    Redis主从/哨兵机制原理分析

    《Redis主从/哨兵机制原理分析》本文介绍了Redis的主从复制和哨兵机制,主从复制实现了数据的热备份和负载均衡,而哨兵机制可以监控Redis集群,实现自动故障转移,哨兵机制通过监控、下线、选举和故... 目录一、主从复制1.1 什么是主从复制1.2 主从复制的作用1.3 主从复制原理1.3.1 全量复制

    Redis主从复制的原理分析

    《Redis主从复制的原理分析》Redis主从复制通过将数据镜像到多个从节点,实现高可用性和扩展性,主从复制包括初次全量同步和增量同步两个阶段,为优化复制性能,可以采用AOF持久化、调整复制超时时间、... 目录Redis主从复制的原理主从复制概述配置主从复制数据同步过程复制一致性与延迟故障转移机制监控与维

    Redis连接失败:客户端IP不在白名单中的问题分析与解决方案

    《Redis连接失败:客户端IP不在白名单中的问题分析与解决方案》在现代分布式系统中,Redis作为一种高性能的内存数据库,被广泛应用于缓存、消息队列、会话存储等场景,然而,在实际使用过程中,我们可能... 目录一、问题背景二、错误分析1. 错误信息解读2. 根本原因三、解决方案1. 将客户端IP添加到Re

    Java汇编源码如何查看环境搭建

    《Java汇编源码如何查看环境搭建》:本文主要介绍如何在IntelliJIDEA开发环境中搭建字节码和汇编环境,以便更好地进行代码调优和JVM学习,首先,介绍了如何配置IntelliJIDEA以方... 目录一、简介二、在IDEA开发环境中搭建汇编环境2.1 在IDEA中搭建字节码查看环境2.1.1 搭建步

    Redis主从复制实现原理分析

    《Redis主从复制实现原理分析》Redis主从复制通过Sync和CommandPropagate阶段实现数据同步,2.8版本后引入Psync指令,根据复制偏移量进行全量或部分同步,优化了数据传输效率... 目录Redis主DodMIK从复制实现原理实现原理Psync: 2.8版本后总结Redis主从复制实

    锐捷和腾达哪个好? 两个品牌路由器对比分析

    《锐捷和腾达哪个好?两个品牌路由器对比分析》在选择路由器时,Tenda和锐捷都是备受关注的品牌,各自有独特的产品特点和市场定位,选择哪个品牌的路由器更合适,实际上取决于你的具体需求和使用场景,我们从... 在选购路由器时,锐捷和腾达都是市场上备受关注的品牌,但它们的定位和特点却有所不同。锐捷更偏向企业级和专