强化学习原理python篇08——actor-critic

2024-02-02 13:20

本文主要是介绍强化学习原理python篇08——actor-critic,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

强化学习原理python篇08——actor-critic

  • 前置知识
    • TD Error
    • REINFORCE
    • QAC
    • Advantage actor-critic (A2C)
  • torch实现步骤
    • 第一步
    • 第二步
    • 第三步
    • 训练
    • 结果
  • Ref

本章全篇参考赵世钰老师的教材 Mathmatical-Foundation-of-Reinforcement-Learning Actor-Critic Methods 章节,请各位结合阅读,本合集只专注于数学概念的代码实现。

前置知识

TD Error

如果用 v ^ ( s , w ) \hat v(s,w) v^(s,w)代表状态值函数,则TD Error表示为
r t + 1 + γ v ^ ( s t + 1 , w ) − v ^ ( s t , w ) r_{t+1}+\gamma \hat v(s_{t+1},w) -\hat v(s_{t},w) rt+1+γv^(st+1,w)v^(st,w)

令损失函数
J w = E [ v ( s t ) − v ^ ( s t , w ) ] 2 J_w = E[ v(s_{t}) -\hat v(s_{t},w)]^2 Jw=E[v(st)v^(st,w)]2

则利用梯度下降法最小化 J θ J_\theta Jθ
w k + 1 = w k − α ∇ w J ( w k ) = w k − α [ − 2 E ( [ r t + 1 + γ v ^ ( s t + 1 , w ) − v ^ ( s t , w ) ] ) ] ∇ w v ^ ( s t , w ) ) \begin{align*} w_{k+1} =& w_k -\alpha\nabla_w J(w_k)\\ =& w_k -\alpha[-2E([r_{t+1}+\gamma \hat v(s_{t+1},w) -\hat v(s_{t},w)])]\nabla_w \hat v(s_{t},w)) \end{align*} wk+1==wkαwJ(wk)wkα[2E([rt+1+γv^(st+1,w)v^(st,w)])]wv^(st,w))

用随机梯度来估算,则最小化 J θ J_\theta Jθ
w k + 1 = w k − α ∇ w J ( w k ) = w k + α [ r t + 1 + γ v ^ ( s t + 1 , w ) − v ^ ( s t , w ) ] ∇ w v ^ ( s t , w ) ) = w k + α [ v ( s t ) − v ^ ( s t , w ) ] ∇ w v ^ ( s t , w ) ) \begin{align*} w_{k+1} =& w_k -\alpha\nabla_w J(w_k)\\ =& w_k +\alpha[r_{t+1}+\gamma \hat v(s_{t+1},w) -\hat v(s_{t},w)]\nabla_w \hat v(s_{t},w))\\ =& w_k +\alpha[ v(s_{t}) -\hat v(s_{t},w)]\nabla_w \hat v(s_{t},w))\\ \end{align*} wk+1===wkαwJ(wk)wk+α[rt+1+γv^(st+1,w)v^(st,w)]wv^(st,w))wk+α[v(st)v^(st,w)]wv^(st,w))

对于q—value来说,
w k + 1 = w k − α ∇ w J ( w k ) = w k + α [ r t + 1 + γ q ^ ( s t + 1 , a t + 1 , w ) − q ^ ( s t , a t , w ) ] ∇ w q ^ ( s t , a t , w ) ) \begin{align*} w_{k+1} =& w_k -\alpha\nabla_w J(w_k)\\ =& w_k +\alpha[r_{t+1}+\gamma \hat q(s_{t+1}, a_{t+1},w) -\hat q(s_{t}, a_{t},w)]\nabla_w \hat q(s_{t},a_{t},w))\\ \end{align*} wk+1==wkαwJ(wk)wk+α[rt+1+γq^(st+1,at+1,w)q^(st,at,w)]wq^(st,at,w))

REINFORCE

参考上一节

θ t + 1 = θ t + ∇ θ J ( θ t ) = θ t + ∇ θ E S − d , a − π ( S , Θ ) [ q ( s , a ) ∇ θ l n π ( a ∣ s , θ ) ] \begin {align*} θ_{t+1} =& θ_{t} + \nabla _{\theta}J(θ_t)\\=& θ_{t} + \nabla _{\theta}E_{S-d,a-\pi(S,\Theta)}[q(s,a) \nabla _{\theta}ln\pi(a|s,\theta)] \end {align*} θt+1==θt+θJ(θt)θt+θESd,aπ(S,Θ)[q(s,a)θl(as,θ)]
一般来说, ∇ θ l n π ( a ∣ s , θ ) \nabla _{\theta}ln\pi(a|s,\theta) θl(as,θ)是未知的,可以用随机梯度法来估计,则
θ t + 1 = θ t + ∇ θ J ( θ t ) = θ t + ∇ θ [ q ( s , a ) ∇ θ l n π ( a ∣ s , θ ) ] \begin {align*} θ_{t+1} =& θ_{t} + \nabla _{\theta}J(θ_t)\\=& θ_{t} + \nabla _{\theta}[q(s,a) \nabla _{\theta}ln\pi(a|s,\theta)] \end {align*} θt+1==θt+θJ(θt)θt+θ[q(s,a)θl(as,θ)]

QAC

The simplest actor-critic algorithm

  • actor:更新策略

    我们采用reinforce的方法来更新策略函数 π \pi π θ t + 1 = θ t + ∇ θ [ q ( s , a ) ∇ θ l n π ( a ∣ s , θ ) ] \begin {align*} θ_{t+1} =& θ_{t} + \nabla _{\theta}[q(s,a) \nabla _{\theta}ln\pi(a|s,\theta)] \end {align*} θt+1=θt+θ[q(s,a)θl(as,θ)]

  • critic:更新值

    我们采用优化td-error的方法来更新行动值 q q q
    w k + 1 = w k + α [ r t + 1 + γ q ^ ( s t + 1 , a t + 1 , w ) − q ^ ( s t , a t , w ) ] ∇ w q ^ ( s t , a t , w ) ) \begin{align*} w_{k+1} =& w_k +\alpha[r_{t+1}+\gamma \hat q(s_{t+1}, a_{t+1},w) -\hat q(s_{t}, a_{t},w)]\nabla_w \hat q(s_{t},a_{t},w)) \end{align*} wk+1=wk+α[rt+1+γq^(st+1,at+1,w)q^(st,at,w)]wq^(st,at,w))

Advantage actor-critic (A2C)

减小方差的下一步是使基线与状态相关(这是一个好主意,因为不同的状态可能具有非常不同的基线)。确实,要决定某个特定动作在某种状态下的适用性,我们会使用该动作的折扣总奖励。但是,总奖励本身可以表示为状态的价值加上动作的优势值:Q(s,a)=V(s)+A(s,a)(参见DuelingDQN)。

知道每个状态的价值(至少有一个近似值)后,我们就可以用它来计算策略梯度并更新策略网络,以增加具有良好优势值的动作的执行概率,并减少具有劣势优势值的动作的执行概率。策略网络(返回动作的概率分布)被称为行动者(actor),因为它会告诉我们该做什么。另一个网络称为评论家(critic),因为它能使我们了解自己的动作有多好。这种改进有一个众所周知的名称,即advantage actorcritic方法,通常被简称为A2C。
E S − d , a − π ( S , Θ ) [ q ( s , a ) ∇ θ l n π ( a ∣ s , θ ) ] = E S − d , a − π ( S , Θ ) [ ∇ θ l n π ( a ∣ s , θ ) [ q ( s , a ) − v ( s ) ] ] E_{S-d,a-\pi(S,\Theta)}[q(s,a) \nabla _{\theta}ln\pi(a|s,\theta)]=E_{S-d,a-\pi(S,\Theta)}[\nabla _{\theta}ln\pi(a|s,\theta)[q(s,a) -v(s)]] ESd,aπ(S,Θ)[q(s,a)θl(as,θ)]=ESd,aπ(S,Θ)[θl(as,θ)[q(s,a)v(s)]]

  • Advantage(TD error)

    δ t = r t + 1 + γ v ( s t + 1 ; w t ) − v ( s t ; w t ) \delta_t =r_{t+1}+\gamma v(s_{t+1};w_t)- v(s_t;w_t) δt=rt+1+γv(st+1;wt)v(st;wt)

  • actor:更新策略

    我们采用reinforce的方法来更新策略函数 π \pi π

    θ t + 1 = θ t + a δ t ∇ θ [ ∇ θ l n π ( a ∣ s , θ ) ] \begin {align*} θ_{t+1} =& θ_{t} + a\delta_t\nabla _{\theta}[\nabla _{\theta}ln\pi(a|s,\theta)] \end {align*} θt+1=θt+aδtθ[θl(as,θ)]

  • critic:更新值

    1、我们采用优化td-error的方法来更新状态值 v v v w k + 1 = w k − α ∇ w [ v ( s t , w ) − v ^ ( s t , w ) ] 2 \begin{align*} w_{k+1} =& w_k -\alpha\nabla_w[ v(s_{t},w) -\hat v(s_{t},w)]^2 \end{align*} wk+1=wkαw[v(st,w)v^(st,w)]2

    2、在这里,使用实际发生的discount reward来估算 v ( s t , w ) v(s_{t},w) v(st,w)

    3、 w k + 1 = w k − α ∇ w [ R − v ^ ( s t , w ) ] 2 \begin{align*} w_{k+1} =& w_k -\alpha\nabla_w[R -\hat v(s_{t},w)]^2 \end{align*} wk+1=wkαw[Rv^(st,w)]2

torch实现步骤

第一步

  1. 初始化A2CNet,使其返回策略函数pi(s, a),和价值V(s)
import collections
import copy
import math
import random
import time
from collections import defaultdictimport gym
import gym.spaces
import numpy as np
import torch
import torch.nn as nn
import torch.nn.utils as nn_utils
import torch.optim as optim
from gym.envs.toy_text import frozen_lake
from torch.utils.tensorboard import SummaryWriterclass A2CNet(nn.Module):def __init__(self, obs_size, hidden_size, q_table_size):super().__init__()# 策略函数pi(s, a)self.policy_net = nn.Sequential(nn.Linear(obs_size, hidden_size),nn.ReLU(),nn.Linear(hidden_size, q_table_size),nn.Softmax(dim=1),)# 价值V(s)self.v_net = nn.Sequential(nn.Linear(obs_size, hidden_size),nn.ReLU(),nn.Linear(hidden_size, 1),)def forward(self, state):if len(torch.Tensor(state).size()) == 1:state = state.reshape(1, -1)return self.policy_net(state), self.v_net(state)

第二步

  1. 使用当前策略πθ在环境中交互N步,并保存状态(st)、动作(at)和奖励(rt)
  2. 如果片段到达结尾,则R=0,否则为Vθ(st),这里采用环境产生的R来近似。
def discount_reward(R, gamma):# r 为历史得分n = len(R)dr = 0for i in range(n):dr += gamma**i * R[i]return drdef generate_episode(env, n_steps, net, gamma, predict=False):episode_history = dict()r_list = []for _ in range(n_steps):episode = []predict_reward = []state, info = env.reset()while True:p, v = net(torch.Tensor(state))p = p.detach().numpy().reshape(-1)action = np.random.choice(list(range(env.action_space.n)), p=p)next_state, reward, terminated, truncted, info = env.step(action)# 如果截断,则展开 v(state) = r + gamma*v(next_state)if truncted and not terminated:reward = reward + gamma * float(net(torch.Tensor(next_state))[1].detach())episode.append([state, action, next_state, reward, terminated])predict_reward.append(reward)state = next_stateif terminated or truncted:episode_history[_] = episoder_list.append(len(episode))episode = []predict_reward = []breakif predict:return np.mean(r_list)return episode_historydef calculate_t_discount_reward(reward_list, gamma):discount_reward = []total_reward = 0for i in reward_list[::-1]:total_reward = total_reward * gamma + idiscount_reward.append(total_reward)return discount_reward[::-1]

第三步

  1. 累积策略梯度 θ t + 1 = θ t + a δ t ∇ θ [ ∇ θ l n π ( a ∣ s , θ ) ] \begin {align*} θ_{t+1} =& θ_{t} + a\delta_t\nabla _{\theta}[\nabla _{\theta}ln\pi(a|s,\theta)] \end {align*} θt+1=θt+aδtθ[θl(as,θ)]

  2. 累积价值梯度
    w k + 1 = w k − α ∇ w [ R − v ^ ( s t , w ) ] 2 \begin{align*} w_{k+1} =& w_k -\alpha\nabla_w[R -\hat v(s_{t},w)]^2 \end{align*} wk+1=wkαw[Rv^(st,w)]2

# actor策略损失函数
def loss(net, batch, gamma, entropy_beta=False):l = 0for episode in batch.values():reward_list = [reward for state, action, next_state, reward, terminated in episode]state = [state for state, action, next_state, reward, terminated in episode]action = [action for state, action, next_state, reward, terminated in episode]# actor策略损失函数## max entropyqt = calculate_t_discount_reward(reward_list, gamma)pi = net(torch.Tensor(state))[0]entropy_loss = -torch.sum((pi * torch.log(pi)), axis=1).mean() * entropy_betapi = pi.gather(dim=1, index=torch.LongTensor(action).reshape(-1, 1))l_policy = -torch.Tensor(qt) @ torch.log(pi)if entropy_beta:l_policy -= entropy_loss# critic损失函数critic_loss = nn.MSELoss()(net(torch.Tensor(state))[1].reshape(-1), torch.Tensor(qt))l += l_policy + critic_lossreturn l / len(batch.values())

训练

## 初始化环境
env = gym.make("CartPole-v1", max_episode_steps=200)
# env = gym.make("CartPole-v1", render_mode = "human")state, info = env.reset()obs_n = env.observation_space.shape[0]
hidden_num = 64
act_n = env.action_space.n
a2c = A2CNet(obs_n, hidden_num, act_n)# 定义优化器
opt = optim.Adam(a2c.parameters(), lr=0.01)# 记录
writer = SummaryWriter(log_dir="logs/PolicyGradient/A2C", comment="test1")epochs = 200
batch_size = 20
gamma = 0.9
entropy_beta = 0.01
# 避免梯度太大
CLIP_GRAD = 0.1for epoch in range(epochs):batch = generate_episode(env, batch_size, a2c, gamma)l = loss(a2c, batch, gamma, entropy_beta)# 反向传播opt.zero_grad()l.backward()# 梯度裁剪nn_utils.clip_grad_norm_(a2c.parameters(), CLIP_GRAD)opt.step()max_steps = generate_episode(env, 10, a2c, gamma, predict=True)writer.add_scalars("Loss",{"loss": l.item(), "max_steps": max_steps},epoch,)print("epoch:{},  Loss: {}, max_steps: {}".format(epoch, l.detach(), max_steps))

结果

在这里插入图片描述
可以看到,对比上一节的几种方法,收敛速度和收敛方向都稳定了不少。

Ref

[1] Mathematical Foundations of Reinforcement Learning,Shiyu Zhao
[2] 深度学习强化学习实践(第二版),Maxim Lapan

这篇关于强化学习原理python篇08——actor-critic的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/670824

相关文章

python生成随机唯一id的几种实现方法

《python生成随机唯一id的几种实现方法》在Python中生成随机唯一ID有多种方法,根据不同的需求场景可以选择最适合的方案,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起学习学习... 目录方法 1:使用 UUID 模块(推荐)方法 2:使用 Secrets 模块(安全敏感场景)方法

使用Python删除Excel中的行列和单元格示例详解

《使用Python删除Excel中的行列和单元格示例详解》在处理Excel数据时,删除不需要的行、列或单元格是一项常见且必要的操作,本文将使用Python脚本实现对Excel表格的高效自动化处理,感兴... 目录开发环境准备使用 python 删除 Excphpel 表格中的行删除特定行删除空白行删除含指定

Python通用唯一标识符模块uuid使用案例详解

《Python通用唯一标识符模块uuid使用案例详解》Pythonuuid模块用于生成128位全局唯一标识符,支持UUID1-5版本,适用于分布式系统、数据库主键等场景,需注意隐私、碰撞概率及存储优... 目录简介核心功能1. UUID版本2. UUID属性3. 命名空间使用场景1. 生成唯一标识符2. 数

Python办公自动化实战之打造智能邮件发送工具

《Python办公自动化实战之打造智能邮件发送工具》在数字化办公场景中,邮件自动化是提升工作效率的关键技能,本文将演示如何使用Python的smtplib和email库构建一个支持图文混排,多附件,多... 目录前言一、基础配置:搭建邮件发送框架1.1 邮箱服务准备1.2 核心库导入1.3 基础发送函数二、

Python包管理工具pip的升级指南

《Python包管理工具pip的升级指南》本文全面探讨Python包管理工具pip的升级策略,从基础升级方法到高级技巧,涵盖不同操作系统环境下的最佳实践,我们将深入分析pip的工作原理,介绍多种升级方... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

基于Python实现一个图片拆分工具

《基于Python实现一个图片拆分工具》这篇文章主要为大家详细介绍了如何基于Python实现一个图片拆分工具,可以根据需要的行数和列数进行拆分,感兴趣的小伙伴可以跟随小编一起学习一下... 简单介绍先自己选择输入的图片,默认是输出到项目文件夹中,可以自己选择其他的文件夹,选择需要拆分的行数和列数,可以通过

Python中反转字符串的常见方法小结

《Python中反转字符串的常见方法小结》在Python中,字符串对象没有内置的反转方法,然而,在实际开发中,我们经常会遇到需要反转字符串的场景,比如处理回文字符串、文本加密等,因此,掌握如何在Pyt... 目录python中反转字符串的方法技术背景实现步骤1. 使用切片2. 使用 reversed() 函

Python中将嵌套列表扁平化的多种实现方法

《Python中将嵌套列表扁平化的多种实现方法》在Python编程中,我们常常会遇到需要将嵌套列表(即列表中包含列表)转换为一个一维的扁平列表的需求,本文将给大家介绍了多种实现这一目标的方法,需要的朋... 目录python中将嵌套列表扁平化的方法技术背景实现步骤1. 使用嵌套列表推导式2. 使用itert

使用Docker构建Python Flask程序的详细教程

《使用Docker构建PythonFlask程序的详细教程》在当今的软件开发领域,容器化技术正变得越来越流行,而Docker无疑是其中的佼佼者,本文我们就来聊聊如何使用Docker构建一个简单的Py... 目录引言一、准备工作二、创建 Flask 应用程序三、创建 dockerfile四、构建 Docker

Python使用vllm处理多模态数据的预处理技巧

《Python使用vllm处理多模态数据的预处理技巧》本文深入探讨了在Python环境下使用vLLM处理多模态数据的预处理技巧,我们将从基础概念出发,详细讲解文本、图像、音频等多模态数据的预处理方法,... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核