本文主要是介绍Chapter6.2:线性系统的校正方法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
此系列属于胡寿松《自动控制原理题海与考研指导》(第三版)习题精选,仅包含部分经典习题,需要完整版习题答案请自行查找,本系列属于知识点巩固部分,搭配如下几个系列进行学习,可用于期末考试和考研复习。
自动控制原理(第七版)知识提炼
自动控制原理(第七版)课后习题精选
自动控制原理(第七版)附录MATLAB基础
第六章:线性系统的校正方法
Example 6.11
设复合校正控制系统如下图所示:
要求:
- 选择前馈装置 G n ( s ) G_n(s) Gn(s),使扰动 n ( t ) n(t) n(t)对系统输出无影响;
- 选择 K 2 K_2 K2,使系统具有最佳阻尼比 ζ = 0.707 \zeta=0.707 ζ=0.707;
解:
-
选择前馈装置 G n ( s ) G_n(s) Gn(s),使扰动 n ( t ) n(t) n(t)对系统输出无影响;
当 R ( s ) = 0 R(s)=0 R(s)=0时,有:
C ( s ) N ( s ) = ( 1 + K 1 K 2 s s 2 ) − G n ( s ) s 2 1 + K 1 K 2 s s 2 + K 1 s 2 = s 2 + K 1 K 2 s − G n ( s ) s 2 + K 1 K 2 s + K 1 \frac{C(s)}{N(s)}=\frac{\left(1+\displaystyle\frac{K_1K_2s}{s^2}\right)-\displaystyle\frac{G_n(s)}{s^2}}{1+\displaystyle\frac{K_1K_2s}{s^2}+\displaystyle\frac{K_1}{s^2}}=\frac{s^2+K_1K_2s-G_n(s)}{s^2+K_1K_2s+K_1} N(s)C(s)=1+s2K1K2s+s2K1(1+s2K1K2s)−s2Gn(s)=s2+K1K2s+K1s2+K1K2s−Gn(s)
由上式可知:当 K 1 > 0 , K 2 > 0 K_1>0,K_2>0 K1>0,K2>0时,闭环系统稳定;若使扰动 n ( t ) n(t) n(t)对系统输出无影响,则:
s 2 + K 1 K 2 s − G n ( s ) = 0 ⇒ G n ( s ) = s ( s + K 1 K 2 ) s^2+K_1K_2s-G_n(s)=0\Rightarrow{G_n(s)}=s(s+K_1K_2) s2+K1K2s−Gn(s)=0⇒Gn(s)=s(s+K1K2) -
选择 K 2 K_2 K2,使系统具有最佳阻尼比 ζ = 0.707 \zeta=0.707 ζ=0.707;
由系统结构图可得:
C ( s ) R ( s ) = K 1 s 2 1 + K 1 K 2 s s 2 + K 1 s 2 = K 1 s 2 + K 1 K 2 s + K 1 \frac{C(s)}{R(s)}=\frac{\displaystyle\frac{K_1}{s^2}}{1+\displaystyle\frac{K_1K_2s}{s^2}+\displaystyle\frac{K_1}{s^2}}=\frac{K_1}{s^2+K_1K_2s+K_1} R(s)C(s)=1+s2K1K2s+s2K1s2K1=s2+K1K2s+K1K1
则
ω n = K 1 , 2 ζ ω n = K 1 K 2 ⇒ ζ = K 2 K 1 2 \omega_n=\sqrt{K_1},2\zeta\omega_n=K_1K_2\Rightarrow\zeta=\frac{K_2\sqrt{K_1}}{2} ωn=K1,2ζωn=K1K2⇒ζ=2K2K1
由 ζ = 0.707 \zeta=0.707 ζ=0.707,则 K 2 = 2 K 1 K_2=\sqrt{\displaystyle\frac{2}{K_1}} K2=K12.
Example 6.12
设单位反馈系统的开环传递函数为: G 0 ( s ) = K s ( 0.1 s + 1 ) ( 0.2 s + 1 ) G_0(s)=\displaystyle\frac{K}{s(0.1s+1)(0.2s+1)} G0(s)=s(0.1s+1)(0.2s+1)K,设计一校正装置,使系统满足下列性能指标:
- 静态速度误差系数 K v = 30 K_v=30 Kv=30;
- 相角裕度 γ ≥ 40 ° \gamma≥40° γ≥40°;
- 对于频率 ω = 0.1 \omega=0.1 ω=0.1,振幅为 3 ° 3° 3°的正弦输入信号,稳态误差的振幅不大于 0.1 ° 0.1° 0.1°;
解:
由题意,取 K = K v = 30 K=K_v=30 K=Kv=30,则待校正系统的传递函数为:
G 0 ( s ) = 30 s ( 0.1 s + 1 ) ( 0.2 s + 1 ) G_0(s)=\displaystyle\frac{30}{s(0.1s+1)(0.2s+1)} G0(s)=s(0.1s+1)(0.2s+1)30
-
绘制待校正系统的对数幅频渐近特性曲线。
待校正系统的对数幅频渐近特性曲线如 L ′ ( ω ) L'(\omega) L′(ω)所示,由图可得,待校正系统的截止频率 ω c ′ = 12.25 r a d / s \omega_c'=12.25{\rm rad/s} ωc′=12.25rad/s,计算待校正系统的相角裕度为:
γ ′ = ( 180 ° − 90 ° − arctan 0.1 ω c ′ − arctan 0.2 ω c ′ ) ∣ ω c ′ = 12.25 = − 28.57 ° \gamma'=\left.(180°-90°-\arctan0.1\omega_c'-\arctan0.2\omega_c')\right|_{\omega_c'=12.25}=-28.57° γ′=(180°−90°−arctan0.1ωc′−arctan0.2ωc′)∣ωc′=12.25=−28.57°
表明待校正系统不稳定,考虑采用滞后校正. -
由要求的 γ ′ ′ \gamma'' γ′′选择 ω c ′ ′ \omega_c'' ωc′′。
选取 φ ( ω c ′ ′ ) = − 6 ° \varphi(\omega_c'')=-6° φ(ωc′′)=−6°,要求 γ ′ ′ = 40 ° \gamma''=40° γ′′=40°,则有: γ ′ ( ω c ′ ′ ) = γ ′ ′ − φ ( ω c ′ ′ ) = 46 ° \gamma'(\omega_c'')=\gamma''-\varphi(\omega_c'')=46° γ′(ωc′′)=γ′′−φ(ωc′′)=46°.
由
γ ′ ′ = 90 ° − arctan 0.1 ω c ′ ′ − arctan 0.2 ω c ′ ′ \gamma''=90°-\arctan0.1\omega_c''-\arctan0.2\omega_c'' γ′′=90°−arctan0.1ωc′′−arctan0.2ωc′′
解得校正后系统的截止频率: ω c ′ ′ = 2.74 r a d / s \omega_c''=2.74{\rm rad/s} ωc′′=2.74rad/s. -
确定滞后网络参数 b b b和 T T T。
当 ω c ′ ′ = 2.74 r a d / s \omega_c''=2.74{\rm rad/s} ωc′′=2.74rad/s时,由图可测得: L ′ ( ω c ′ ′ ) = 20.79 d B L'(\omega_c'')=20.79{\rm dB} L′(ωc′′)=20.79dB;再由 20 lg b = − L ′ ( ω c ′ ′ ) 20\lg{b}=-L'(\omega_c'') 20lgb=−L′(ωc′′),解得: b = 0.0913 b=0.0913 b=0.0913,取 b = 0.1 b=0.1 b=0.1。令 1 b T = 0.14 ω c ′ ′ \displaystyle\frac{1}{bT}=0.14\omega_c'' bT1=0.14ωc′′,求得: T = 26.07 T=26.07 T=26.07。
则串联滞后校正网络的对数幅频渐近特性曲线如 L c ( ω ) L_c(\omega) Lc(ω)所示,其传递函数为:
G c ( s ) = 1 + b T s 1 + T s = 1 + 2.61 s 1 + 26.07 s G_c(s)=\frac{1+bTs}{1+Ts}=\frac{1+2.61s}{1+26.07s} Gc(s)=1+Ts1+bTs=1+26.07s1+2.61s
已校正系统的对数幅频渐近特性曲线如 L ′ ′ ( ω ) L''(\omega) L′′(ω)所示,其传递函数为:
G c ( s ) G 0 ( s ) = 30 ( 2.61 s + 1 ) s ( 0.1 s + 1 ) ( 0.2 s + 1 ) ( 26.07 s + 1 ) G_c(s)G_0(s)=\frac{30(2.61s+1)}{s(0.1s+1)(0.2s+1)(26.07s+1)} Gc(s)G0(s)=s(0.1s+1)(0.2s+1)(26.07s+1)30(2.61s+1) -
仿真结构图及仿真结果。
由输出波形图可知,稳态误差振幅为 ∣ e s s ( t ) ∣ = 0.027 ° < 0.1 ° |e_{ss}(t)|=0.027°<0.1° ∣ess(t)∣=0.027°<0.1°,满足设计要求.
- 系统开环对数幅频渐近特性曲线。
Example 6.13
设复合控制系统如下图所示,图中, G n ( s ) G_n(s) Gn(s)为顺馈装置传递函数; G c ( s ) = K t s G_c(s)=K_ts Gc(s)=Kts,为测速发电机及分压器的传递函数; G 1 ( s ) = K 1 ; G 2 ( s ) = 1 / s 2 G_1(s)=K_1;G_2(s)=1/s^2 G1(s)=K1;G2(s)=1/s2。确定 K 1 , G n ( s ) K_1,G_n(s) K1,Gn(s)及 G c ( s ) G_c(s) Gc(s),使系统输出量完全不受扰动 n ( t ) n(t) n(t)的影响,且单位阶跃响应超调量 σ % = 25 % \sigma\%=25\% σ%=25%,峰值时间 t p = 2 t_p=2 tp=2。
解:
由图可得,为使系统输出完全不受扰动影响,应使
1 + G n G 2 1 + G 1 G 2 G c = 0 1+\frac{G_nG_2}{1+G_1G_2G_c}=0 1+1+G1G2GcGnG2=0
即
G n = − 1 + G 1 G 2 G c G 2 = − s ( s + K 1 K t ) G_n=-\frac{1+G_1G_2G_c}{G_2}=-s(s+K_1K_t) Gn=−G21+G1G2Gc=−s(s+K1Kt)
系统对输入的开环传递函数为:
G ( s ) = G 1 G 2 1 + G 1 G 2 G c = K 1 s ( s + K 1 K t ) = ω n 2 s ( s + 2 ζ ω n ) G(s)=\frac{G_1G_2}{1+G_1G_2G_c}=\frac{K_1}{s(s+K_1K_t)}=\frac{\omega_n^2}{s(s+2\zeta\omega_n)} G(s)=1+G1G2GcG1G2=s(s+K1Kt)K1=s(s+2ζωn)ωn2
题意要求:
σ % = e − π ζ / 1 − ζ 2 × 100 % = 0.25 , t p = π ω n 1 − ζ 2 = 2 \sigma\%={\rm e}^{-\pi\zeta/\sqrt{1-\zeta^2}}\times100\%=0.25,t_p=\frac{\pi}{\omega_n\sqrt{1-\zeta^2}}=2 σ%=e−πζ/1−ζ2×100%=0.25,tp=ωn1−ζ2π=2
解得:
ζ = ln 4 π 2 + ( ln 4 ) 2 = 0.404 , ω n = π 2 1 − ζ 2 = 1.717 \zeta=\frac{\ln4}{\sqrt{\pi^2+(\ln4)^2}}=0.404,\omega_n=\frac{\pi}{2\sqrt{1-\zeta^2}}=1.717 ζ=π2+(ln4)2ln4=0.404,ωn=21−ζ2π=1.717
因此,可得:
K 1 = ω n 2 = 2.948 , K t = 2 ζ ω n K 1 = 0.471 K_1=\omega_n^2=2.948,K_t=\frac{2\zeta\omega_n}{K_1}=0.471 K1=ωn2=2.948,Kt=K12ζωn=0.471
有:
G c ( s ) = K t s = 0.471 s , G n ( s ) = − s ( s + K 1 K t ) = − s ( s + 1.389 ) G_c(s)=K_ts=0.471s,G_n(s)=-s(s+K_1K_t)=-s(s+1.389) Gc(s)=Kts=0.471s,Gn(s)=−s(s+K1Kt)=−s(s+1.389)
Example 6.14
已知某最小相位系统开环对数幅频渐近特性曲线如下图所示,写出开环传递函数 G 0 ( s ) G_0(s) G0(s)一种可能的形式;
解:
由系统的开环对数幅频渐近特性曲线可知,系统的开环传递函数为:
G 0 ( s ) = K ( 1 ω 2 s + 1 ) s ( 1 ω 1 s + 1 ) 2 ( 1 50 s + 1 ) G_0(s)=\frac{K\left(\displaystyle\frac{1}{\omega_2}s+1\right)}{s\left(\displaystyle\frac{1}{\omega_1}s+1\right)^2\left(\displaystyle\frac{1}{50}s+1\right)} G0(s)=s(ω11s+1)2(501s+1)K(ω21s+1)
由系统开环对数幅频渐近特性曲线的几何特性可得:
20 lg K 0.2 = 20 ⇒ K = 2 , 20 lg ω c 0.2 = 20 ⇒ ω c = 2 20 lg ω 1 ω c = 10 ⇒ ω 1 = 6.32 , 60 lg ω 2 ω 1 = 30 ⇒ ω 2 = 20 \begin{aligned} &20\lg\frac{K}{0.2}=20\Rightarrow{K=2},20\lg\frac{\omega_c}{0.2}=20\Rightarrow\omega_c=2\\\\ &20\lg\frac{\omega_1}{\omega_c}=10\Rightarrow\omega_1=6.32,60\lg\frac{\omega_2}{\omega_1}=30\Rightarrow\omega_2=20 \end{aligned} 20lg0.2K=20⇒K=2,20lg0.2ωc=20⇒ωc=220lgωcω1=10⇒ω1=6.32,60lgω1ω2=30⇒ω2=20
故系统的开环传递函数为:
G 0 ( s ) = 2 ( 1 20 s + 1 ) s ( 1 6.32 s + 1 ) 2 ( 1 50 s + 1 ) G_0(s)=\frac{2\left(\displaystyle\frac{1}{20}s+1\right)}{s\left(\displaystyle\frac{1}{6.32}s+1\right)^2\left(\displaystyle\frac{1}{50}s+1\right)} G0(s)=s(6.321s+1)2(501s+1)2(201s+1)
Example 6.15
设单位反馈系统的开环传递函数为: G 0 ( s ) = 4 K s ( s + 2 ) G_0(s)=\displaystyle\frac{4K}{s(s+2)} G0(s)=s(s+2)4K,设计一串联校正装置,使系统满足下列性能指标:
- 在单位斜坡输入下的稳态误差 e s s ( ∞ ) = 0.05 e_{ss}(\infty)=0.05 ess(∞)=0.05;
- 相角裕度 γ ≥ 45 ° \gamma≥45° γ≥45°;幅值裕度 h ( d B ) ≥ 10 d B h({\rm dB})≥10{\rm dB} h(dB)≥10dB;
解:
待校正系统的开环传递函数为:
G 0 ( s ) = 2 K s ( 0.5 s + 1 ) G_0(s)=\frac{2K}{s(0.5s+1)} G0(s)=s(0.5s+1)2K
有
K v = 2 K K_v=2K Kv=2K
由系统在单位斜坡输入下的稳态误差要求: e s s ( ∞ ) = 1 K v = 0.05 e_{ss}(\infty)=\displaystyle\frac{1}{K_v}=0.05 ess(∞)=Kv1=0.05,可得 K v = 20 K_v=20 Kv=20;故取 K = 10 K=10 K=10.
则待校正系统的传递函数为:
G 0 ( s ) = 20 s ( 0.5 s + 1 ) G_0(s)=\frac{20}{s(0.5s+1)} G0(s)=s(0.5s+1)20
-
绘制待校正系统的对数幅频渐近特性曲线。
待校正系统的对数幅频渐近特性曲线如 L ′ ( ω ) L'(\omega) L′(ω)所示,由图可知,待校正系统的截止频率 ω c ′ = 6.32 r a d / s \omega_c'=6.32{\rm rad/s} ωc′=6.32rad/s,计算待校正系统的相角裕度为:
γ ′ = 180 ° − 90 ° − arctan 0.5 ω c ′ ∣ ω c ′ = 6.32 = 17.56 ° \gamma'=\left.180°-90°-\arctan0.5\omega_c'\right|_{\omega_c'=6.32}=17.56° γ′=180°−90°−arctan0.5ωc′∣ωc′=6.32=17.56°
表明待校正系统稳定,考虑采用超前校正. -
确定超前校正网络参数 a a a和 T T T。
选取 ω c ′ ′ = 10 r a d / s \omega_c''=10{\rm rad/s} ωc′′=10rad/s时,由图可测得 L ′ ( ω c ′ ′ ) = − 7.96 d B L'(\omega_c'')=-7.96{\rm dB} L′(ωc′′)=−7.96dB;由 10 lg a = − L ′ ( ω c ′ ′ ) 10\lg{a}=-L'(\omega_c'') 10lga=−L′(ωc′′),解得: a = 6.25 a=6.25 a=6.25。
令 T = 1 ω c ′ ′ a T=\displaystyle\frac{1}{\omega_c''\sqrt{a}} T=ωc′′a1,求得: T = 0.04 T=0.04 T=0.04。
串联超前校正网络的对数开环幅频渐近特性曲线如 L c ( ω ) L_c(\omega) Lc(ω)所示,其传递函数为:
a G c ( s ) = 1 + a T s 1 + T s = 1 + 0.25 s 1 + 0.04 s aG_c(s)=\frac{1+aTs}{1+Ts}=\frac{1+0.25s}{1+0.04s} aGc(s)=1+Ts1+aTs=1+0.04s1+0.25s
将放大器增益提高 a a a倍,校正后系统的对数幅频渐近特性曲线如 L ′ ′ ( ω ) L''(\omega) L′′(ω)所示,其传递函数为:
a G c ( s ) G 0 ( s ) = 20 ( 0.25 s + 1 ) s ( 0.5 s + 1 ) ( 0.04 s + 1 ) aG_c(s)G_0(s)=\frac{20(0.25s+1)}{s(0.5s+1)(0.04s+1)} aGc(s)G0(s)=s(0.5s+1)(0.04s+1)20(0.25s+1) -
验算性能指标。
γ ′ ′ = 180 ° + ∠ a G c ( j ω c ′ ′ ) G 0 ( j ω c ′ ′ ) = 90 ° + ( arctan 0.25 ω c ′ ′ − arctan 0.5 ω c ′ ′ − arctan 0.04 ω c ′ ′ ) ∣ ω c ′ ′ = 10 = 57.71 ° > 45 ° \begin{aligned} \gamma''&=180°+\angle{aG_c({\rm j}\omega_c'')G_0({\rm j}\omega_c'')}\\\\ &=90°+\left.(\arctan0.25\omega_c''-\arctan0.5\omega_c''-\arctan0.04\omega_c'')\right|_{\omega_c''=10}\\\\ &=57.71°>45° \end{aligned} γ′′=180°+∠aGc(jωc′′)G0(jωc′′)=90°+(arctan0.25ωc′′−arctan0.5ωc′′−arctan0.04ωc′′)∣ωc′′=10=57.71°>45°
因为:
φ ( ω ) = arctan 0.25 ω − 90 ° − arctan 0.5 ω − arctan 0.04 ω > − 180 ° \varphi(\omega)=\arctan0.25\omega-90°-\arctan0.5\omega-\arctan0.04\omega>-180° φ(ω)=arctan0.25ω−90°−arctan0.5ω−arctan0.04ω>−180°
故幅值裕度 h ( d B ) → ∞ h({\rm dB})\to\infty h(dB)→∞,所以各项性能指标均满足要求. -
对数幅频渐近特性曲线。
Example 6.16
设单位反馈系统的开环传递函数为: G 0 = K e − 0.01 s s ( 0.1 s + 1 ) ( 0.01 s + 1 ) G_0=\displaystyle\frac{K{\rm e}^{-0.01s}}{s(0.1s+1)(0.01s+1)} G0=s(0.1s+1)(0.01s+1)Ke−0.01s,若要求系统的相角裕度 γ ( ω c ) = 45 ° \gamma(\omega_c)=45° γ(ωc)=45°, 稳态误差 e s s ( ∞ ) = 0.01 e_{ss}(\infty)=0.01 ess(∞)=0.01,确定串联校正装置的形式与参数.
解:
由要求系统的稳态误差 e s s ( ∞ ) = 0.01 e_{ss}(\infty)=0.01 ess(∞)=0.01,即 K v = 100 K_v=100 Kv=100,故取 K = 100 K=100 K=100,则待校正系统的传递函数为:
G 0 = 100 e − 0.01 s s ( 0.1 s + 1 ) ( 0.01 s + 1 ) G_0=\displaystyle\frac{100{\rm e}^{-0.01s}}{s(0.1s+1)(0.01s+1)} G0=s(0.1s+1)(0.01s+1)100e−0.01s
-
绘制待校正系统的对数幅频渐近特性曲线。
待校正系统的对数幅频渐近特性曲线如 L ′ ( ω ) L'(\omega) L′(ω)所示,由图可得,待校正系统的截止频率 ω c ′ = 31.62 r a d / s \omega_c'=31.62{\rm rad/s} ωc′=31.62rad/s,计算待校正系统的相角裕度为:
γ ′ = ( 90 ° − 0.01 × 57.3 ° ω c ′ − arctan 0.1 ω c ′ − arctan 0.01 ω c ′ ) ∣ ω c ′ = 31.62 = − 18.12 ° \gamma'=\left.(90°-0.01\times57.3°\omega_c'-\arctan0.1\omega_c'-\arctan0.01\omega_c')\right|_{\omega_c'=31.62}=-18.12° γ′=(90°−0.01×57.3°ωc′−arctan0.1ωc′−arctan0.01ωc′)∣ωc′=31.62=−18.12°
表明待校正系统不稳定,考虑采用滞后校正. -
确定滞后网络参数 b b b和 T T T。
选取 ω c ′ ′ = 2 r a d / s \omega_c''=2{\rm rad/s} ωc′′=2rad/s时,由图可测得: L ′ ( ω c ′ ′ ) = 33.98 d B L'(\omega_c'')=33.98{\rm dB} L′(ωc′′)=33.98dB,由 20 lg b = − L ′ ( ω c ′ ′ ) 20\lg{b}=-L'(\omega_c'') 20lgb=−L′(ωc′′),解得: b = 0.02 b=0.02 b=0.02。
校正后系统的相角裕度为:
γ ′ ′ = ( 90 ° + arctan 0.02 T ω c ′ ′ − 0.01 × 57.3 ° ω c ′ ′ − arctan 0.1 ω c ′ ′ − arctan 0.01 ω c ′ ′ − arctan T ω c ′ ′ ) = 45 ° \begin{aligned} \gamma''=(90°+\arctan0.02T\omega_c''-0.01\times57.3°\omega_c''-\arctan0.1\omega_c''-\arctan0.01\omega_c''-\arctan{T}\omega_c'')=45° \end{aligned} γ′′=(90°+arctan0.02Tωc′′−0.01×57.3°ωc′′−arctan0.1ωc′′−arctan0.01ωc′′−arctanTωc′′)=45°
解得:
T = 39.86 或 T = 0.312 T=39.86或T=0.312 T=39.86或T=0.312
若 T = 0.312 T=0.312 T=0.312,由图可知 ω c ′ ′ > 2 r a d / s \omega_c''>2{\rm rad/s} ωc′′>2rad/s,故取 T = 39.86 T=39.86 T=39.86。则串联滞后校正网络的对数幅频特性曲线 L c ( ω ) L_c(\omega) Lc(ω)所示,其传递函数为:
G c ( s ) = 1 + b T s 1 + T s = 1 + 0.8 s 1 + 39.86 s G_c(s)=\frac{1+bTs}{1+Ts}=\frac{1+0.8s}{1+39.86s} Gc(s)=1+Ts1+bTs=1+39.86s1+0.8s
校正后系统的开环对数幅频渐近特性曲线 L ′ ′ ( ω ) L''(\omega) L′′(ω)所示,其传递函数为:
G c ( s ) G 0 ( s ) = 100 ( 0.8 s + 1 ) e − 0.01 s s ( 0.1 s + 1 ) ( 0.01 s + 1 ) ( 39.86 s + 1 ) G_c(s)G_0(s)=\frac{100(0.8s+1){\rm e}^{-0.01s}}{s(0.1s+1)(0.01s+1)(39.86s+1)} Gc(s)G0(s)=s(0.1s+1)(0.01s+1)(39.86s+1)100(0.8s+1)e−0.01s -
验算性能指标。
γ ′ ′ = 180 ° + ∠ G c ( j ω c ′ ′ ) G 0 ( j ω c ′ ′ ) = 90 ° + ( arctan 0.8 ω c ′ ′ − 0.01 × 57.3 ° ω c ′ ′ − arctan 0.1 ω c ′ ′ − arctan 0.01 ω c ′ ′ − arctan 39.86 ω c ′ ′ ) = 45.1 ° \begin{aligned} \gamma''&=180°+\angle{G_c({\rm j}\omega_c'')G_0({\rm j}\omega_c'')}\\\\ &=90°+(\arctan0.8\omega_c''-0.01\times57.3°\omega_c''-\arctan0.1\omega_c''-\arctan0.01\omega_c''-\arctan39.86\omega_c'')\\\\ &=45.1° \end{aligned} γ′′=180°+∠Gc(jωc′′)G0(jωc′′)=90°+(arctan0.8ωc′′−0.01×57.3°ωc′′−arctan0.1ωc′′−arctan0.01ωc′′−arctan39.86ωc′′)=45.1° -
对数幅频渐近特性曲线。
这篇关于Chapter6.2:线性系统的校正方法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!