Redis核心技术与实战【学习笔记】 - 14.Redis 旁路缓存的工作原理及如何选择应用系统的缓存类型

本文主要是介绍Redis核心技术与实战【学习笔记】 - 14.Redis 旁路缓存的工作原理及如何选择应用系统的缓存类型,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

概述

我们知道,Redis 提供了高性能的数据存取功能,广泛应用在缓存场景中,既可以提升业务的响应速度,又可以避免把高并发的请求发送到数据库。

如果 Redis 做缓存时出现了问题,比如说缓存失效,那么,大量请求就会直接积压到数据库,给数据库带来巨大的压力,很可能导致数据库宕机。

正是因为 Redis 用作缓存的普遍性以及它在业务应用的重要作用,所以,我们需要系统的掌握缓存的一系列内容,包括工作原理、替换策略、异常处理和扩展机制。

具体来说,需要解决四个关键问题:

  • Redis 缓存是如何工作的?
  • Redis 缓存满了,该如何处理?
  • 为什么会有缓存一致性、缓存穿透、缓存雪崩、缓存击穿等异常,该如何处理?
  • Redis 的内存比较有效,如果用快速的固态应用来保存数据,可以增加缓存的数据量,那么 Redis 缓存可以使用快速固态硬盘吗?

1.缓存的特征

首先,你要知道,一个系统中的不同层之间的访问速度不一样,所以我们才需要缓存,这样就可以把一些需要频繁访问的数据放在缓存中,以加快他们的访问速度。

下图是计算机系统的三层存储结构,以及他们各自的常用容量和访问性能。
在这里插入图片描述
图中可以看到,CPU、内存、磁盘这三次的访问速度从几十 ns 到 100ns,再到几 ms,性能差异很大。

想象一下,如果每次 CPU 都处理数据时,都要从 ms 级别的慢速磁盘中读取数据,然后再进行处理,那么,CPU 只能等磁盘的数据传输完成。这样一来,高速的 CPU 就被慢速的磁盘拖累了,整个计算机系统的运行速度就会变得非常慢。

所以,计算机系统中,默认有两种缓存:

  • CPU 里面的末级缓存,即 LLC,用来缓存内存中的数据,避免每次都内存中存取数据;
  • 内存中的高速页缓存,即 page cache,用来缓存磁盘中的数据,避免每次从磁盘中存取数据。

在这里插入图片描述

和内存相比,LLC 的访问速度更快,跟磁盘相比,内存的访问是更快的。所以,我们可以看出来缓存的第一个特征:在一个层次化的系统中,缓存一定是一个快速子系统,数据存在缓存中时,能避免每次从慢速子系统中存取数据

对应互联网来说, Redis 就是快速子系统,而数据库就是慢速子系统了。

了解这一点,你就可以理解,为什么必须想尽办法让 Redis 提供高性能的访问。因为,如果访问速度很慢,Redis 作为缓存的价值就不大了。

再看下计算机分层结构。LLC 的大小是 MB 级别,page cache 的大小是 GB 级别,而磁盘的大小是 TB 级别。其实这包含了缓存的第二个特征:缓存系统的容量大小总是小于后端慢速系统的,我们不可能把所有数据都存放在缓存系统中。它表明缓存的容量终究是有限的,缓存中的数据量也是有限的,肯定是没有办法时刻满足访问需求的。所以,缓存和慢速系统之间,比如存在数据写回和再度取的交互过程。简单来说,缓存中的数据需要按一定的规则淘汰,写回后端系统,而新的数据又要从后端系统中读取出来,写入缓存。

Redis 本身是支持按一定的规则淘汰数据的,相当于实现了缓存的数据淘汰,其实,这也是 Redis 适合用作缓存的一个重要原因。

2.Redis 缓存处理请求的两种情况

Redis 用作缓存时,我们会把 Redis 部署在数据库的前端,业务应用在访问数据库时,会先查询 Redis 中是否保存了相应的数据。

根据数据是否在缓存中,会有两种情况。

  • 缓存命中:Redis 中有相应的数据,就直接读取 Redis ,性能非常快。
  • 缓存缺失:Redis 中没有数据,从后端数据库中读取数据,性能就会变慢。而且,一旦发生了缓存确实,需要把确实的数据写入 Redis,这个过程叫做缓存更新。缓存更新涉及到保证缓存和数据库之间数据一致性问题。

下图演示了发生缓存命中或缺失时,应用读取数据的情况。
在这里插入图片描述
使用 Redis 缓存时,基本有三个操作:

  1. 应用读取数据时,先读取 Redis
  2. 发生缓存缺失时,需要从数据库读取数据
  3. 发生缓存缺失时,还要更新数据

那么,这些操作由谁来做呢?这和 Redis 缓存的使用方式相关。接下来就分析下 Redis 作为旁路缓存的使用方式。

3.Redis作为旁路缓存的使用操作

Redis 是一个独立的系统软件,和业务应用程序是两个软件,当我们部署了 Redis 实例后,它只会被动地等待客户端发送请求,然后再进行处理。所以,如果应用程序想要使用 Redis 缓存,我们就要在程序中增加相应的代码。所以我们把 Redis 称为旁路缓存。也就是说,读取缓存、读取数据库和更新缓存的操作都是在应用程序中来完成。

使用 Redis 缓存时,我们需要在应用程序中增加三方面的代码:

  • 当应用程序需要读取数据时,需要在代码中显示调用 Redis 的 GET 操作接口,进行查询;
  • 如果缓存缺失,应用程序需要再和数据库连接,从数据库中读取数据。
  • 当缓存中的数据需要更新时,也需要在应用程序中显示地调用 SET 操作接口,把更新的数据写入缓存。

下面是伪代码示例:

String cacheKey = "productid_1";
String cacheValue = redisCache.get(cacheKey);
if ( StringUtils.isNotEmpty(cacheValue)) {// 缓存命中return cacheValue;
}
else {// 缓存缺失cacheValue = getProductFromDB();// 缓存更新redisCache.put(cacheValue)  
}

可以看到,为了使用缓存,Web 应用程序需要有一个表示缓存系统的实例 redisCache,还要主动调用 Redis 的 GET 接口,并且要处理缓存命中和缓存缺失时的逻辑,例如在缓存缺失时,需要更新缓存。

需要注意的是,因为需要新增代码来使用缓存,所以 Redis 不适用于哪些无法取得源码的应用。

在使用旁路缓存时,我们需要在应用程序中增加操作代码,增加了使用 Redis 缓存的额外工作,但是正是因为 Redis 是旁路缓存,是一个独立系统,我们可以单独对 Redis 缓存进行扩容或者性能优化。而且,只要保持接口不变,应用程序中增加的代码就不用在修改了。

除了在从 Redis 缓存中查下、读取数据以外,应用程序还可能会对数据进行修改,这是,我们既可以在旁路缓存中修改,也可以在数据库中进行修改?该如何选择呢?

这涉及到了 Redis 缓存的两种类型:只读缓存和读写缓存。

  • 只读缓存能加速读请求
  • 读写缓存可以同时加速读写请求。而且,度企鹅缓存又有两种数据写回策略,可以让我们根据业务需求,在保证性能和保证数据可靠性之间进行选择。

4.缓存的类型

根据 Redis 是否接收写请求,把 Redis 分成只读缓存和读写缓存。

4.1 只读缓存

Redis 用作只读缓存时,应用要读取数据的话,会先调用 Redis GET 接口,查询数据是否存在。而所有的数据写请求,会直接发往数据库,在数据库中增删改。对于,删改的数据来说,如果 Redis 已经缓存了相应的数据,应用需要把这些缓存的数据删除,Redis 中就没有这些数据了。

当应用再次读取这些数据时,会发生缓存缺失,应用会把这些数据从数据库中读出来,并写到缓存中。这样一来,后续再被读取时,就可以直接从缓存中获取了,能起到加速的效果。

假设业务应用要修改数据 A,此时数据 A 在 Redis 中也存在了,那么应用会直接在数据库里修改 A,并把 Redis 中的 A 删除。等到应用需要读取数据 A 时,会发送缓存缺失,此时,应用从数据库中读取 A,并写入 Redis,以便后续请求直接从缓存中直接读取。
在这里插入图片描述
只读缓存在数据库中更新数据的好处是,所有最新的数据都在数据库中,而数据库是提供数据可靠性保证的,这些数据不会有丢失的风险。当我们需要缓存图片、短视频这些用户只读数据时,就可以使用只读缓存这个类型了。

4.2 读写缓存

对于读写缓存来说,除了读请求会发送到缓存进行处理(直接在缓存中查下数据是否存在),所有的写请求也会发送到缓存,在缓存中直接对数据进行增删改的操作。此时,得益于 Redis 高性能访问特性,数据库的增删改操作可以在缓存中快速完成,处理结果也会快速返回给业务应用,这就可以提升业务应用的响应速度。

但是,和只读缓存不一样的是,在使用读写缓存是,最新的数据是在 Redis 中,而 Redis 是内存数据库,一旦出现掉电或宕机,内存中的数据就会丢失。

所以,根据业务应用对数据可靠性和缓存性能的不同要求,我们会有同步直写和异步写回两种策略。学习了解这两种策略,可以帮助我们根据业务需求,做出正确的设计。

同步直写是指写请求发给缓存的同事,也会发给后端数据库进行处理,等到缓存和数据库都写完成,才返回给客户端。这样,即使缓存宕机,最新的数据仍然保存在数据库中,这就提供了数据可靠性的保证。

不过同步直写会降低缓存的访问性能。这是因为缓存中处理写请求的速度是很快的,而数据库处理写请求的速度较慢。即使缓存很快地处理了写请求,也需要等待数据库处理完所有的写请求,才能给应用返回结果,这就增加了缓存的响应延迟。

而异步写回策略,则是优先考虑了响应延迟。此时,所有写请求都现在缓存中处理。等到这些增改的数据要从缓存中淘汰出来时,缓存将它们写回后端数据库。这样一来,处理这些数据的操作是在缓存中进行的,很快就能完成。只不过,如果发生了掉电,而它们还没有被写回数据库,就会有丢失的风险了。

在这里插入图片描述

关于选择只读缓存,还是读写缓存,主要看我们对写请求是否有加速的需求。

  • 如果需要对写请求进行加速,我们选择读写缓存
  • 如果写请求很少,或者是只需要提升读请求的响应速度的话,我们选择只读缓存

例如,在商品大促的场景中,商品的库存信息会一直被修改。如果每次修改都需到数据库中处理,就会拖慢整个应用,此时,我们通常会选择读写缓存的模式。而在短视频 APP 的场景中,虽然视频的属性很多,但是,一般确定后,修改并不频繁,此时,在数据库中进行修改对缓存影响不大,所以只读缓存模式是一个合适的选择。

5. 小结

这篇关于Redis核心技术与实战【学习笔记】 - 14.Redis 旁路缓存的工作原理及如何选择应用系统的缓存类型的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/669736

相关文章

网页解析 lxml 库--实战

lxml库使用流程 lxml 是 Python 的第三方解析库,完全使用 Python 语言编写,它对 XPath表达式提供了良好的支 持,因此能够了高效地解析 HTML/XML 文档。本节讲解如何通过 lxml 库解析 HTML 文档。 pip install lxml lxm| 库提供了一个 etree 模块,该模块专门用来解析 HTML/XML 文档,下面来介绍一下 lxml 库

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

中文分词jieba库的使用与实景应用(一)

知识星球:https://articles.zsxq.com/id_fxvgc803qmr2.html 目录 一.定义: 精确模式(默认模式): 全模式: 搜索引擎模式: paddle 模式(基于深度学习的分词模式): 二 自定义词典 三.文本解析   调整词出现的频率 四. 关键词提取 A. 基于TF-IDF算法的关键词提取 B. 基于TextRank算法的关键词提取

如何选择适合孤独症兄妹的学校?

在探索适合孤独症儿童教育的道路上,每一位家长都面临着前所未有的挑战与抉择。当这份责任落在拥有孤独症兄妹的家庭肩上时,选择一所能够同时满足两个孩子特殊需求的学校,更显得尤为关键。本文将探讨如何为这样的家庭做出明智的选择,并介绍星贝育园自闭症儿童寄宿制学校作为一个值得考虑的选项。 理解孤独症儿童的独特性 孤独症,这一复杂的神经发育障碍,影响着儿童的社交互动、沟通能力以及行为模式。对于拥有孤独症兄

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境

水位雨量在线监测系统概述及应用介绍

在当今社会,随着科技的飞速发展,各种智能监测系统已成为保障公共安全、促进资源管理和环境保护的重要工具。其中,水位雨量在线监测系统作为自然灾害预警、水资源管理及水利工程运行的关键技术,其重要性不言而喻。 一、水位雨量在线监测系统的基本原理 水位雨量在线监测系统主要由数据采集单元、数据传输网络、数据处理中心及用户终端四大部分构成,形成了一个完整的闭环系统。 数据采集单元:这是系统的“眼睛”,

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;