人工智能 —— 代价树的盲目搜索

2024-02-02 04:48

本文主要是介绍人工智能 —— 代价树的盲目搜索,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

代价树的代价

用g(n)表示从初始结点S0到结点n的代价,用c(n, n1)表示从父结点n到其子结点n1的代价。这样,对结点n1的代价有:

  • g(n1)=g(n)+c(n, n1)。

代价树搜索的目的是为了找到最佳解,即找到一条代价最小的解路径。


代价树的广度优先搜索算法

(1)搜索算法的过程

  1. 把初始结点S0放入Open表中,置S0的代价g(S0)=0;
  2. 如果Open表为空,则问题无解 ,失败退出;
  3. 把Open表的第一个结点取出放入Closed表,并记该结点为n;
  4. 考察结点n是否为目标。若是,则找到了问题的解,成功退出;
  5. 若结点n不可扩展,则转第(2)步;
  6. 扩展结点n,生成其子结点ni(i=1, 2, …),将这些子结点放入Open表中,并为每一个子结点设置指向父结点的指针。
  7. 按如下公式:g(ni)=g (n) +c (n , ni) i=1,2,…,计算各子结点的代价,并根据各子结点的代价对Open表中的全部结点按由小到大的顺序排序。然后转第(2)步。

(2)广度优先搜索实例

这篇关于人工智能 —— 代价树的盲目搜索的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/669513

相关文章

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境

认识、理解、分类——acm之搜索

普通搜索方法有两种:1、广度优先搜索;2、深度优先搜索; 更多搜索方法: 3、双向广度优先搜索; 4、启发式搜索(包括A*算法等); 搜索通常会用到的知识点:状态压缩(位压缩,利用hash思想压缩)。

hdu1240、hdu1253(三维搜索题)

1、从后往前输入,(x,y,z); 2、从下往上输入,(y , z, x); 3、从左往右输入,(z,x,y); hdu1240代码如下: #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#inc

hdu 4517 floyd+记忆化搜索

题意: 有n(100)个景点,m(1000)条路,时间限制为t(300),起点s,终点e。 访问每个景点需要时间cost_i,每个景点的访问价值为value_i。 点与点之间行走需要花费的时间为g[ i ] [ j ] 。注意点间可能有多条边。 走到一个点时可以选择访问或者不访问,并且当前点的访问价值应该严格大于前一个访问的点。 现在求,从起点出发,到达终点,在时间限制内,能得到的最大

AI基础 L9 Local Search II 局部搜索

Local Beam search 对于当前的所有k个状态,生成它们的所有可能后继状态。 检查生成的后继状态中是否有任何状态是解决方案。 如果所有后继状态都不是解决方案,则从所有后继状态中选择k个最佳状态。 当达到预设的迭代次数或满足某个终止条件时,算法停止。 — Choose k successors randomly, biased towards good ones — Close

hdu4277搜索

给你n个有长度的线段,问如果用上所有的线段来拼1个三角形,最多能拼出多少种不同的? import java.io.BufferedInputStream;import java.io.BufferedReader;import java.io.IOException;import java.io.InputStream;import java.io.InputStreamReader;

基于人工智能的智能家居语音控制系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 随着物联网(IoT)和人工智能技术的发展,智能家居语音控制系统已经成为现代家庭的一部分。通过语音控制设备,用户可以轻松实现对灯光、空调、门锁等家电的控制,提升生活的便捷性和舒适性。本文将介绍如何构建一个基于人工智能的智能家居语音控制系统,包括环境准备

从希腊神话到好莱坞大片,人工智能的七大历史时期值得铭记

本文选自historyextra,机器之心编译出品,参与成员:Angulia、小樱、柒柒、孟婷 你可能听过「技术奇点」,即本世纪某个阶段将出现超级智能,那时,技术将会以人类难以想象的速度飞速发展。同样,黑洞也是一个奇点,在其上任何物理定律都不适用;因此,技术奇点也是超越未来理解范围的一点。 然而,在我们到达那个奇点之前(假设我们能到达),还存在另一个极大的不连续问题,我将它称之

✨机器学习笔记(二)—— 线性回归、代价函数、梯度下降

1️⃣线性回归(linear regression) f w , b ( x ) = w x + b f_{w,b}(x) = wx + b fw,b​(x)=wx+b 🎈A linear regression model predicting house prices: 如图是机器学习通过监督学习运用线性回归模型来预测房价的例子,当房屋大小为1250 f e e t 2 feet^

浙大数据结构:04-树7 二叉搜索树的操作集

这道题答案都在PPT上,所以先学会再写的话并不难。 1、BinTree Insert( BinTree BST, ElementType X ) 递归实现,小就进左子树,大就进右子树。 为空就新建结点插入。 BinTree Insert( BinTree BST, ElementType X ){if(!BST){BST=(BinTree)malloc(sizeof(struct TNo