深度学习之Focus层

2024-02-02 03:20
文章标签 学习 深度 focus

本文主要是介绍深度学习之Focus层,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

点击上方“小白学视觉”,选择加"星标"或“置顶

重磅干货,第一时间送达


文章导读

本文的知识点来源于用YOLOv5做一些道路目标检测时,看到一个名曰Focus的层,发现是一种下采样的方法。所以在此科普一下深度学习中有哪些下采样以及各自优缺点。

小编近期备考PMP,所以分享频率减缓,各位小伙伴见谅~~~不过发现已经把写公号做知识分享作为一种习惯,哈哈,希望能长期坚持下去。

1

深度学习有哪些下采样的方式?

YOLOv5中提到了一种Focus层,高大上的名称背后感觉就是特殊的下采样而已。不过原理逻辑虽然简单,但也体现了作者的创造力,不然小编咋就没想到呢~~~

提到下采样,在这里小编列举一下深度学习中都接触过哪些下采样方式:

最早接触到的应该是池化操作,如下图所示:

860ba769a93639e916e5e12a6f9659c4.png

包括平均池化和最大池化两种,平均池化有种平滑滤波的味道,通过求取滑窗内的元素平均值作为当前特征点,根据滑窗的尺寸控制下采样的力度,尺寸越大采样率越高,但是边缘信息损失越大。最大池化类似锐化滤波,突出滑窗内的细节点。但是不论哪种池化操作,都是以牺牲部分信息为代价,换取数据量的减少。

步长大于1的卷积也可以实现池化功能,如下图所示:

a0822d860b4a48d9d0cdb9771062aa35.png

卷积操作可以获得图像像素之间的特征相关性,采用步长大于1的跳跃可以实现数据降维,但是跳跃采样造成的相邻像素点特征丢失是否会影响最终效果。

池化作为一种强先验操作人为设定了降采样规则,而卷积层是通过参数自己学习出降采样算子,具体对比可以参考这篇文章:Striving for simplicity: The All Convolutional Net.

2

下采样在神经网络中的作用?

下采样在神经网络中主要是为了减少参数量达到降维的作用,同时还能增加局部感受野。

但是下采样的过程不可避免的伴随信息丢失,尤其是在分割任务要经历下采样编码和上采样解码的过程,那么如何在不损失数据信息的情况下,增大深层特征图的感受野呢?

18年的时候出了个空洞卷积的玩意,如下图所示,根据打洞的间距把卷积核进行膨胀,在没有增加参数量的情况下,增大了感受野,从某种角度来看也算是一种局部下采样的过程。

fc5e220f6fd8fefaf4a9e1a655634212.png

图a,b,c均是3×3尺寸卷积核,图(a)的空洞为0,每个核算子之间紧挨着没有间隔,等价于普通的卷积,每次运算学习9个参数,感受野即3×3;图(b)的空洞为1,同样学习9个参数,但是每个算子之间空一格,感受野即7×7;图(c)的空洞为3,仍然学习9个参数,但是每个算子之间空三格,感受野即15×15。

如何计算空洞卷积的感受野呢?

这里给出一个常规的计算公式:

size=(dilate_rate-1)  ×(kernel_size-1)+  kernel_size

3

YOLOv2之PassThrough层

上面我们聊了一些下采样的方法和优缺点,但是在目标检测网络中还有两种特殊的下采样,PassThrough首次出现在YOLOv2网络,将相邻的特征堆积在不同的通道中,目的是将大尺度特征图下采样后与小尺度特征图进行融合,从而增加小目标检测的精确度。如下图所示:

96a6dbc9da5577fe0954a894ebd58b89.png

小编对这张图和Focus的图对比了半天,简直一模一样,暂时没发现这两个层有何区别?通过Tensorflow提供的API接口tf.space_to_depth测试了下Tensor的输出,确实是隔行采样再拼接的形式。有小伙伴知道差异的欢迎+v指导。

4

YOLOv5之Focus层

Focus层非常类似PassThrough层,同样是采用切片操作把高分辨率的图片/特征图拆分成多个低分辨率的图片/特征图,如下图所示:隔行采样+拼接

b3cea47094ebb708a14c9a3ae84bf663.png

将4×4×3的Tensor通过间隔采样拆分成4份,在通道维度上进行拼接生成2×2×12的Tensor。Focus层将w-h平面上的信息转换到通道维度,再通过卷积的方式提取不同特征。采用这种方式可以减少下采样带来的信息损失。

小编觉得从细节的角度此方式确实比stride为2的卷积或者池化要精致,用在PC端建模可能有一些精度提升。但是如果用在工程上,考虑到大多数芯片厂商未必提供Focus层或者自定义接口,从部署的角度可以牺牲Focus带来的0.1%的提升更换成Conv或Pool层。

下载1:OpenCV-Contrib扩展模块中文版教程在「小白学视觉」公众号后台回复:扩展模块中文教程,即可下载全网第一份OpenCV扩展模块教程中文版,涵盖扩展模块安装、SFM算法、立体视觉、目标跟踪、生物视觉、超分辨率处理等二十多章内容。下载2:Python视觉实战项目52讲
在「小白学视觉」公众号后台回复:Python视觉实战项目,即可下载包括图像分割、口罩检测、车道线检测、车辆计数、添加眼线、车牌识别、字符识别、情绪检测、文本内容提取、面部识别等31个视觉实战项目,助力快速学校计算机视觉。下载3:OpenCV实战项目20讲
在「小白学视觉」公众号后台回复:OpenCV实战项目20讲,即可下载含有20个基于OpenCV实现20个实战项目,实现OpenCV学习进阶。交流群欢迎加入公众号读者群一起和同行交流,目前有SLAM、三维视觉、传感器、自动驾驶、计算摄影、检测、分割、识别、医学影像、GAN、算法竞赛等微信群(以后会逐渐细分),请扫描下面微信号加群,备注:”昵称+学校/公司+研究方向“,例如:”张三 + 上海交大 + 视觉SLAM“。请按照格式备注,否则不予通过。添加成功后会根据研究方向邀请进入相关微信群。请勿在群内发送广告,否则会请出群,谢谢理解~

这篇关于深度学习之Focus层的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/669326

相关文章

Node.js 中 http 模块的深度剖析与实战应用小结

《Node.js中http模块的深度剖析与实战应用小结》本文详细介绍了Node.js中的http模块,从创建HTTP服务器、处理请求与响应,到获取请求参数,每个环节都通过代码示例进行解析,旨在帮... 目录Node.js 中 http 模块的深度剖析与实战应用一、引言二、创建 HTTP 服务器:基石搭建(一

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

系统架构师考试学习笔记第三篇——架构设计高级知识(20)通信系统架构设计理论与实践

本章知识考点:         第20课时主要学习通信系统架构设计的理论和工作中的实践。根据新版考试大纲,本课时知识点会涉及案例分析题(25分),而在历年考试中,案例题对该部分内容的考查并不多,虽在综合知识选择题目中经常考查,但分值也不高。本课时内容侧重于对知识点的记忆和理解,按照以往的出题规律,通信系统架构设计基础知识点多来源于教材内的基础网络设备、网络架构和教材外最新时事热点技术。本课时知识

线性代数|机器学习-P36在图中找聚类

文章目录 1. 常见图结构2. 谱聚类 感觉后面几节课的内容跨越太大,需要补充太多的知识点,教授讲得内容跨越较大,一般一节课的内容是书本上的一章节内容,所以看视频比较吃力,需要先预习课本内容后才能够很好的理解教授讲解的知识点。 1. 常见图结构 假设我们有如下图结构: Adjacency Matrix:行和列表示的是节点的位置,A[i,j]表示的第 i 个节点和第 j 个