TUM数据集

2024-02-01 15:10
文章标签 数据 tum

本文主要是介绍TUM数据集,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

TUM数据集下载链接
https://vision.in.tum.de/data/datasets/rgbd-dataset/download
https://vision.in.tum.de/data/datasets/visual-inertial-dataset

在这里插入图片描述标定数据总共提供四种:
  1.calib-cam1~8:相机标定,本质矩阵以及两个相机之间的姿态变换
  2.calib-imu1~4:IMU标定,找到相机和IMU之间的最优姿态变换
  3.calib-vignette2~3:光晕标定??
  4.calib-imu-static2:IMU标定,只包含IMU数据,用于估计IMU噪声和随机游走。格式timestamp, gyro_x, gyro_y, gyro_z, accel_x, accel_y, accel_z, temperature

数据集序列总共5种:
  1.corridor1~5(走廊):在走廊和几个办公室拍摄,只在开始和结束有真实值。
  2.magistrale1~6(大厅):在校园内的一个大厅拍摄,只在开始和结束有真实值。
  3.outdoors1~8(户外):在校园内的室外场景拍摄,只在开始和结束有真实值。
  4.room1~6(室内):对应有5个图像序列,整个过程都带有运动捕捉系统提高的真实值。
  5.slides1~3(滑梯):在大厅中拍摄,包含一段光照极差的路程,只在开始和结束有真实值。

由于 TUM数据集是从实际环境中采集的,需要解释一下它的数据格式(数据集一般都有自己定义的格式)。在解压后,你将看到以下这些文件:

  1. rgb.txt 和 depth.txt 记录了各文件的采集时间和对应的文件名。
  2. rgb/ 和 depth/目录存放着采集到的 png 格式图像文件。彩色图像为八位三通道,深
    度图为 16 位单通道图像。文件名即采集时间。
  3. groundtruth.txt 为外部运动捕捉系统采集到的相机位姿,格式为
    (time, t x , t y , t z , q x , q y , q z , q w ),
    我们可以把它看成标准轨迹。

rgb和depth文件夹下存放着彩色图和深度图。在这里插入图片描述图像的文件名是以采集时间命名的。而rgb.txt和depth.txt则存储了所有图像的采集时间和文件名称,例如:
1305031910.765238 rgb/1305031910.765238.png
表示在机器时间1305031910.765238采集了一张RGB图像,存放于rgb/1305031910.765238.png中。

这种存储方式的一个特点是,没有直接的rgb-depth一一对应关系。由于采集时间的差异,几乎没有两张图像是同一个时刻采集的。然而,我们在处理图像时,需要把一个RGB和一个depth当成一对来处理。所以,我们需要一步预处理,找到rgb和depth图像的一一对应关系。

请注意彩色图、深度图和标准轨迹的采集都是独立的,轨迹的采集频率比图像高很多。在使用数据之前,需要根据采集时间,对数据进行一次时间上的对齐,以便对彩色图和深度图进行配对。原则上,我们可以把采集时间相近于一个阈值的数据,看成是一对图像。并把相近时间的位姿,看作是该图像的真实采集位置。

TUM为我们提供了一个工具来做这件事,详细的说明请看:http://vision.in.tum.de/data/datasets/rgbd-dataset/tools 该网页整理了一些常用工具,包括时间配对,ground-truth误差比对、图像到点云的转换等。对于现在预处理这一步,我们需要的是一个 associate.py 文件,如下(你可以直接把内容拷下来,存成本地的associate.py文件),请把此文件放到数据集目录下,
只要给它两个文件名即可,它会输出一个匹配好的序列,像这样:

python associate.py rgb.txt depth.txt

输出则是一行一行的数据,即是配对好的RGB图和深度图了,
1305031955.536891 rgb/1305031955.536891.png 1305031955.552015 depth/1305031955.552015.png

程序默认时间差在0.02内的就可以当成一对图像。为了保存这个结果,我们可以把它输出到一个文件中去,这样,只要有了这个associate.txt文件,我们就可以找到一对对的RGB和彩色图啦!如:

python associate.py rgb.txt depth.txt > associate.txt

这段脚本会根据输入两个文件中的采集时间进行配对,最后输出到一个文件 associate.txt。输出文件含有被配对的两个图像的时间、文件名信息,可以作为后续处理的来源。

请注意彩色图、深度图和标准轨迹的采集都是独立的,轨迹的采集频率比图像高很多。在使用数据之前,需要根据采集时间,对数据进行一次时间上的对齐,以便对彩色图和深度图进行配对。
在这里插入图片描述关于ground truth

ground truth是TUM数据集提供的标准轨迹,它是由一个外部的(很高级的)运动捕捉装置测量的,基本上你可以把它当成一个标准答案喽!ground truth的记录格式也和前面类似,像这样:

1305031907.2496 -0.0730 -0.4169 1.5916 0.8772 -0.1170 0.0666 -0.4608

各个数据分别是:时间,位置(x,y,z),姿态四元数(qx, qy, qz, qw),对四元数不熟悉的同学可以看看“数学基础”那几篇博客。那么这个轨迹长什么样呢?我们写个小脚本来画个图看看:
复制代码:

#!/usr/bin/env python
# coding=utf-8import numpy as np
import matplotlib.pyplot as plt
import mpl_toolkits.mplot3df = open("./groundtruth.txt")
x = []
y = []
z = []
for line in f:if line[0] == '#':continuedata = line.split()x.append( float(data[1] ) )y.append( float(data[2] ) )z.append( float(data[3] ) )
ax = plt.subplot( 111, projection='3d')
ax.plot(x,y,z)
plt.show()复制代码

复制代码

把这部分代码复制存储成draw_groundtruth.py存放到数据目录中,再运行:

python draw_groundtruth.py

就能看到轨迹的形状啦:
  在这里插入图片描述

第二件事,因为外部那个运动捕捉装置的记录频率比较高,得到的轨迹点也比图像密集很多,如何查找每个图像的真实位置呢?

可以用同样的方式来匹配associate.txt和groundtruth.txt中的时间信息:

python associate.py associate.txt groundtruth.txt > associate_with_groundtruth.txt

这时,我们的新文件 associate_with_groundtruth.txt 中就含有每个帧的位姿信息了:

1305031910.765238 rgb/1305031910.765238.png 1305031910.771502 depth/1305031910.771502.png 1305031910.769500 -0.8683 0.6026 1.5627 0.8219 -0.3912 0.1615 -0.3811

更多详情可参考https://www.cnblogs.com/gaoxiang12/p/5175118.html

这篇关于TUM数据集的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/667635

相关文章

MySQL 删除数据详解(最新整理)

《MySQL删除数据详解(最新整理)》:本文主要介绍MySQL删除数据的相关知识,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录一、前言二、mysql 中的三种删除方式1.DELETE语句✅ 基本语法: 示例:2.TRUNCATE语句✅ 基本语

MyBatisPlus如何优化千万级数据的CRUD

《MyBatisPlus如何优化千万级数据的CRUD》最近负责的一个项目,数据库表量级破千万,每次执行CRUD都像走钢丝,稍有不慎就引起数据库报警,本文就结合这个项目的实战经验,聊聊MyBatisPl... 目录背景一、MyBATis Plus 简介二、千万级数据的挑战三、优化 CRUD 的关键策略1. 查

python实现对数据公钥加密与私钥解密

《python实现对数据公钥加密与私钥解密》这篇文章主要为大家详细介绍了如何使用python实现对数据公钥加密与私钥解密,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录公钥私钥的生成使用公钥加密使用私钥解密公钥私钥的生成这一部分,使用python生成公钥与私钥,然后保存在两个文

mysql中的数据目录用法及说明

《mysql中的数据目录用法及说明》:本文主要介绍mysql中的数据目录用法及说明,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、版本3、数据目录4、总结1、背景安装mysql之后,在安装目录下会有一个data目录,我们创建的数据库、创建的表、插入的

Navicat数据表的数据添加,删除及使用sql完成数据的添加过程

《Navicat数据表的数据添加,删除及使用sql完成数据的添加过程》:本文主要介绍Navicat数据表的数据添加,删除及使用sql完成数据的添加过程,具有很好的参考价值,希望对大家有所帮助,如有... 目录Navicat数据表数据添加,删除及使用sql完成数据添加选中操作的表则出现如下界面,查看左下角从左

SpringBoot中4种数据水平分片策略

《SpringBoot中4种数据水平分片策略》数据水平分片作为一种水平扩展策略,通过将数据分散到多个物理节点上,有效解决了存储容量和性能瓶颈问题,下面小编就来和大家分享4种数据分片策略吧... 目录一、前言二、哈希分片2.1 原理2.2 SpringBoot实现2.3 优缺点分析2.4 适用场景三、范围分片

Redis分片集群、数据读写规则问题小结

《Redis分片集群、数据读写规则问题小结》本文介绍了Redis分片集群的原理,通过数据分片和哈希槽机制解决单机内存限制与写瓶颈问题,实现分布式存储和高并发处理,但存在通信开销大、维护复杂及对事务支持... 目录一、分片集群解android决的问题二、分片集群图解 分片集群特征如何解决的上述问题?(与哨兵模

浅析如何保证MySQL与Redis数据一致性

《浅析如何保证MySQL与Redis数据一致性》在互联网应用中,MySQL作为持久化存储引擎,Redis作为高性能缓存层,两者的组合能有效提升系统性能,下面我们来看看如何保证两者的数据一致性吧... 目录一、数据不一致性的根源1.1 典型不一致场景1.2 关键矛盾点二、一致性保障策略2.1 基础策略:更新数

Oracle 数据库数据操作如何精通 INSERT, UPDATE, DELETE

《Oracle数据库数据操作如何精通INSERT,UPDATE,DELETE》在Oracle数据库中,对表内数据进行增加、修改和删除操作是通过数据操作语言来完成的,下面给大家介绍Oracle数... 目录思维导图一、插入数据 (INSERT)1.1 插入单行数据,指定所有列的值语法:1.2 插入单行数据,指

SQL Server修改数据库名及物理数据文件名操作步骤

《SQLServer修改数据库名及物理数据文件名操作步骤》在SQLServer中重命名数据库是一个常见的操作,但需要确保用户具有足够的权限来执行此操作,:本文主要介绍SQLServer修改数据... 目录一、背景介绍二、操作步骤2.1 设置为单用户模式(断开连接)2.2 修改数据库名称2.3 查找逻辑文件名