OpenCV 8 - 模糊处理(均值滤波,高斯滤波,中值滤波,双边滤波)

2024-02-01 13:36

本文主要是介绍OpenCV 8 - 模糊处理(均值滤波,高斯滤波,中值滤波,双边滤波),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

模糊处理原理:

Blur是图像处理中最简单和常用的操作之一,使用该操作的原因为了给图像预处理时候减低噪声使用,Blur操作其背后是数学的卷积计算,
通常这些卷积算子计算都是线性操作,所以又出线性虑波。

在这里插入图片描述

  • 假设有6x6的图像像素点矩阵。
  • 卷积过程:6x6上面是个3x3的窗口,从左向右,从上向下移动,黄色的每个像个像素点值之和取平均值赋给中心红色像素作为它卷积处理之后新的像素值。每次移动一个像素格。

常用的进行模糊滤波方法:均值滤波高斯滤波

  • 均值滤波: 就是根据周围像素点和当前像素点的平均值计算出当前点的像素值,采用的是算术平均值
  • 高斯滤波:是运用高斯函数(遵循数据正态分布)用邻域内像素的加权平均值去替代模板中心像素点的值
    在这里插入图片描述

1 均值滤波

void blur( InputArray src, OutputArray dst, Size ksize, Point anchor = Point(-1,-1), int borderType = BORDER_DEFAULT );

参数:

src				:输入图片
dst				:输出图片
ksize			:卷积核大小(注意:必须是基数值)
anchor 			:锚点位置,默认值Point(-1,-1)表示锚点位于内核
borderType 		:边框模式用于外推图像外部的像素

代码示例:

	Mat src, dst;src = imread("./1.png");if (!src.data)	//判断图片是否加载成功!{std::cout << "打开图片失败!" << std::endl;return -1;}dst = Mat::zeros(src.size(), src.type());blur(src,dst,Size(7,7),Point(-1,-1));imshow("src image", src);imshow("dst image", dst);

这篇关于OpenCV 8 - 模糊处理(均值滤波,高斯滤波,中值滤波,双边滤波)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/667443

相关文章

如何使用celery进行异步处理和定时任务(django)

《如何使用celery进行异步处理和定时任务(django)》文章介绍了Celery的基本概念、安装方法、如何使用Celery进行异步任务处理以及如何设置定时任务,通过Celery,可以在Web应用中... 目录一、celery的作用二、安装celery三、使用celery 异步执行任务四、使用celery

SpringBoot操作spark处理hdfs文件的操作方法

《SpringBoot操作spark处理hdfs文件的操作方法》本文介绍了如何使用SpringBoot操作Spark处理HDFS文件,包括导入依赖、配置Spark信息、编写Controller和Ser... 目录SpringBoot操作spark处理hdfs文件1、导入依赖2、配置spark信息3、cont

opencv实现像素统计的示例代码

《opencv实现像素统计的示例代码》本文介绍了OpenCV中统计图像像素信息的常用方法和函数,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 统计像素值的基本信息2. 统计像素值的直方图3. 统计像素值的总和4. 统计非零像素的数量

MyBatis延迟加载的处理方案

《MyBatis延迟加载的处理方案》MyBatis支持延迟加载(LazyLoading),允许在需要数据时才从数据库加载,而不是在查询结果第一次返回时就立即加载所有数据,延迟加载的核心思想是,将关联对... 目录MyBATis如何处理延迟加载?延迟加载的原理1. 开启延迟加载2. 延迟加载的配置2.1 使用

Android WebView的加载超时处理方案

《AndroidWebView的加载超时处理方案》在Android开发中,WebView是一个常用的组件,用于在应用中嵌入网页,然而,当网络状况不佳或页面加载过慢时,用户可能会遇到加载超时的问题,本... 目录引言一、WebView加载超时的原因二、加载超时处理方案1. 使用Handler和Timer进行超

Python中处理NaN值的技巧分享

《Python中处理NaN值的技巧分享》在数据科学和数据分析领域,NaN(NotaNumber)是一个常见的概念,它表示一个缺失或未定义的数值,在Python中,尤其是在使用pandas库处理数据时,... 目录NaN 值的来源和影响使用 pandas 的 isna()和 isnull()函数直接比较 Na

详解Python中通用工具类与异常处理

《详解Python中通用工具类与异常处理》在Python开发中,编写可重用的工具类和通用的异常处理机制是提高代码质量和开发效率的关键,本文将介绍如何将特定的异常类改写为更通用的ValidationEx... 目录1. 通用异常类:ValidationException2. 通用工具类:Utils3. 示例文

无人叉车3d激光slam多房间建图定位异常处理方案-墙体画线地图切分方案

墙体画线地图切分方案 针对问题:墙体两侧特征混淆误匹配,导致建图和定位偏差,表现为过门跳变、外月台走歪等 ·解决思路:预期的根治方案IGICP需要较长时间完成上线,先使用切分地图的工程化方案,即墙体两侧切分为不同地图,在某一侧只使用该侧地图进行定位 方案思路 切分原理:切分地图基于关键帧位置,而非点云。 理论基础:光照是直线的,一帧点云必定只能照射到墙的一侧,无法同时照到两侧实践考虑:关

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

Open3D 基于法线的双边滤波

目录 一、概述 1.1原理 1.2实现步骤 1.3应用场景 二、代码实现 2.1关键函数 输入参数: 输出参数: 参数影响: 2.2完整代码 三、实现效果 3.1原始点云 3.2滤波后点云 Open3D点云算法汇总及实战案例汇总的目录地址: Open3D点云算法与点云深度学习案例汇总(长期更新)-CSDN博客 一、概述         基于法线的双边