深度学习之基于VGG16与ResNet50实现鸟类识别

2024-02-01 13:32

本文主要是介绍深度学习之基于VGG16与ResNet50实现鸟类识别,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

鸟类识别在之前做过,但是效果特别差。而且ResNet50的效果直接差到爆炸,这次利用VGG16与ResNet50的官方模型进行鸟类识别。

1.导入库

import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
import os,pathlib,PIL
from tensorflow.keras import layers,models,Sequential,Input,Model
from tensorflow.keras.layers import Conv2D,MaxPooling2D,Flatten,Dense,BatchNormalization,ZeroPadding2D,Activation,AveragePooling2D# 支持中文
plt.rcParams['font.sans-serif'] = ['SimHei']  # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False  # 用来正常显示负号

2.数据准备

数据所在文件夹

data_dir = "E:/tmp/.keras/datasets/Birds_photos"
data_dir = pathlib.Path(data_dir)
img_count = len(list(data_dir.glob('*/*')))
print(img_count)#共565张图片

labels:一共是4类

all_images_paths = list(data_dir.glob('*'))##”*”匹配0个或多个字符
all_images_paths = [str(path) for path in all_images_paths]
all_label_names = [path.split("\\")[5].split(".")[0] for path in all_images_paths]

超参数的设置

height = 227
width = 227
batch_size = 8
epochs = 20

按照8:2的比例划分训练集与测试集

train_data_gen = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1./255,validation_split=0.2
)
train_ds = train_data_gen.flow_from_directory(directory=data_dir,target_size=(height,width),batch_size=batch_size,shuffle=True,class_mode='categorical',subset='training'
)
test_ds = train_data_gen.flow_from_directory(directory=data_dir,target_size=(height,width),batch_size=batch_size,shuffle=True,class_mode='categorical',subset='validation'
)

查看数据

plt.figure(figsize=(15,10))for images,labels in train_ds:for i in range(32):ax = plt.subplot(4,8,i+1)plt.imshow(images[i])plt.title(all_label_names[np.argmax(labels[i])])plt.axis("off")break
plt.show()

在这里插入图片描述

3.VGG16网络

迁移学习调用VGG16的官方模型

conv_base = tf.keras.applications.VGG16(weights='imagenet',include_top=False)
#设置为不可训练
conv_base.trainable = False
#模型搭建
model = tf.keras.Sequential()
model.add(conv_base)
model.add(tf.keras.layers.GlobalAveragePooling2D())
model.add(tf.keras.layers.Dense(512,activation='relu'))
model.add(tf.keras.layers.Dense(4,activation='sigmoid'))

模型编译&&训练

model.compile(optimizer="adam",loss='categorical_crossentropy',metrics=['accuracy']
)
history = model.fit(train_ds,validation_data=test_ds,epochs=epochs
)

在这里插入图片描述
模型的准确率很高,在博主实验的几个模型中,VGG16的模型准确率是最高的。

保存网络:

model.save("E:/Users/yqx/PycharmProjects/BirdsRec/model.h5")

利用网络模型进行预测:

new_model = tf.keras.models.load_model("E:/Users/yqx/PycharmProjects/BirdsRec/model.h5")
plt.figure(figsize=(18,18))
plt.suptitle("预测结果展示")
for images,labels in test_ds:for i in range(8):ax = plt.subplot(2,4,i+1)plt.imshow(images[i])img_array = tf.expand_dims(images[i],0)#增加一个维度pre = new_model.predict(img_array)plt.title(all_label_names[np.argmax(pre)])plt.axis("off")break
plt.show()

在这里插入图片描述
绘制混淆矩阵

from sklearn.metrics import confusion_matrix
import seaborn as sns
import pandas as pd#绘制混淆矩阵
def plot_cm(labels,pre):conf_numpy = confusion_matrix(labels,pre)#根据实际值和预测值绘制混淆矩阵conf_df = pd.DataFrame(conf_numpy,index=all_label_names,columns=all_label_names)#将data和all_label_names制成DataFrameplt.figure(figsize=(8,8))sns.heatmap(conf_df,annot=True,fmt="d",cmap="BuPu")#将data绘制为混淆矩阵plt.title('混淆矩阵',fontsize = 15)plt.ylabel('真实值',fontsize = 14)plt.xlabel('预测值',fontsize = 14)plt.show()
test_pre = []
test_label = []
for images,labels in test_ds:for image,label in zip(images,labels):img_array = tf.expand_dims(image,0)#增加一个维度pre = model.predict(img_array)#预测结果test_pre.append(all_label_names[np.argmax(pre)])#将预测结果传入列表test_label.append(all_label_names[np.argmax(label)])#将真实结果传入列表break#由于硬件问题。这里我只用了一个batch,一共8张图片。
plot_cm(test_label,test_pre)#绘制混淆矩阵

在这里插入图片描述

4.ResNet50网络

与VGG16不同的是,ResNet50的网络参数设置的是可以训练,经过多次实验,这样ResNet50的实验效果是最好的。

conv_base = tf.keras.applications.ResNet50(weights='imagenet',include_top=False)
#设置为可以训练
conv_base.trainable = True
#模型搭建
model = tf.keras.Sequential()
model.add(conv_base)
model.add(tf.keras.layers.GlobalAveragePooling2D())
model.add(tf.keras.layers.Dense(512,activation='relu'))
model.add(tf.keras.layers.Dense(4,activation='sigmoid'))

在这里插入图片描述
虽然准确率在来回波动,但是整体的准确率是比较高的,比VGG16的准确率还是差一些的。博主关于ResNet50的了解还比较少,等到了解深刻了再回来更新。

这篇关于深度学习之基于VGG16与ResNet50实现鸟类识别的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/667426

相关文章

AJAX请求上传下载进度监控实现方式

《AJAX请求上传下载进度监控实现方式》在日常Web开发中,AJAX(AsynchronousJavaScriptandXML)被广泛用于异步请求数据,而无需刷新整个页面,:本文主要介绍AJAX请... 目录1. 前言2. 基于XMLHttpRequest的进度监控2.1 基础版文件上传监控2.2 增强版多

Redis分片集群的实现

《Redis分片集群的实现》Redis分片集群是一种将Redis数据库分散到多个节点上的方式,以提供更高的性能和可伸缩性,本文主要介绍了Redis分片集群的实现,具有一定的参考价值,感兴趣的可以了解一... 目录1. Redis Cluster的核心概念哈希槽(Hash Slots)主从复制与故障转移2.

springboot+dubbo实现时间轮算法

《springboot+dubbo实现时间轮算法》时间轮是一种高效利用线程资源进行批量化调度的算法,本文主要介绍了springboot+dubbo实现时间轮算法,文中通过示例代码介绍的非常详细,对大家... 目录前言一、参数说明二、具体实现1、HashedwheelTimer2、createWheel3、n

使用Python实现一键隐藏屏幕并锁定输入

《使用Python实现一键隐藏屏幕并锁定输入》本文主要介绍了使用Python编写一个一键隐藏屏幕并锁定输入的黑科技程序,能够在指定热键触发后立即遮挡屏幕,并禁止一切键盘鼠标输入,这样就再也不用担心自己... 目录1. 概述2. 功能亮点3.代码实现4.使用方法5. 展示效果6. 代码优化与拓展7. 总结1.

Mybatis 传参与排序模糊查询功能实现

《Mybatis传参与排序模糊查询功能实现》:本文主要介绍Mybatis传参与排序模糊查询功能实现,本文通过实例代码给大家介绍的非常详细,感兴趣的朋友跟随小编一起看看吧... 目录一、#{ }和${ }传参的区别二、排序三、like查询四、数据库连接池五、mysql 开发企业规范一、#{ }和${ }传参的

Docker镜像修改hosts及dockerfile修改hosts文件的实现方式

《Docker镜像修改hosts及dockerfile修改hosts文件的实现方式》:本文主要介绍Docker镜像修改hosts及dockerfile修改hosts文件的实现方式,具有很好的参考价... 目录docker镜像修改hosts及dockerfile修改hosts文件准备 dockerfile 文

基于SpringBoot+Mybatis实现Mysql分表

《基于SpringBoot+Mybatis实现Mysql分表》这篇文章主要为大家详细介绍了基于SpringBoot+Mybatis实现Mysql分表的相关知识,文中的示例代码讲解详细,感兴趣的小伙伴可... 目录基本思路定义注解创建ThreadLocal创建拦截器业务处理基本思路1.根据创建时间字段按年进

SpringBoot3实现Gzip压缩优化的技术指南

《SpringBoot3实现Gzip压缩优化的技术指南》随着Web应用的用户量和数据量增加,网络带宽和页面加载速度逐渐成为瓶颈,为了减少数据传输量,提高用户体验,我们可以使用Gzip压缩HTTP响应,... 目录1、简述2、配置2.1 添加依赖2.2 配置 Gzip 压缩3、服务端应用4、前端应用4.1 N

SpringBoot实现数据库读写分离的3种方法小结

《SpringBoot实现数据库读写分离的3种方法小结》为了提高系统的读写性能和可用性,读写分离是一种经典的数据库架构模式,在SpringBoot应用中,有多种方式可以实现数据库读写分离,本文将介绍三... 目录一、数据库读写分离概述二、方案一:基于AbstractRoutingDataSource实现动态

Python FastAPI+Celery+RabbitMQ实现分布式图片水印处理系统

《PythonFastAPI+Celery+RabbitMQ实现分布式图片水印处理系统》这篇文章主要为大家详细介绍了PythonFastAPI如何结合Celery以及RabbitMQ实现简单的分布式... 实现思路FastAPI 服务器Celery 任务队列RabbitMQ 作为消息代理定时任务处理完整