【SparkML系列1】相关性、卡方检验和概述器实现

2024-02-01 08:28

本文主要是介绍【SparkML系列1】相关性、卡方检验和概述器实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Correlation(相关性)

计算两组数据之间的相关性在统计学中是一种常见的操作。在spark.ml中,我们提供了计算多组数据之间成对相关性的灵活性。目前支持的相关性方法是皮尔逊(Pearson)相关系数和斯皮尔曼(Spearman)相关系数。

相关性计算使用指定的方法为输入的向量数据集计算相关性矩阵。输出将是一个数据框,其中包含向量列的相关性矩阵。


import org.apache.spark.ml.linalg.{Matrix, Vectors}
import org.apache.spark.ml.stat.Correlation
import org.apache.spark.sql.{Row, SparkSession}/*** @description 相关性测试* @date 2024/1/31 14:32* @author by fangwen1*/
object CorrelationExample {def main(args: Array[String]): Unit = {val spark = SparkSession.builder.master("local[*]").appName("CorrelationExample").getOrCreate()import spark.implicits._val data = Seq(// 创建稀疏向量Vectors.sparse(4, Seq((0, 1.0), (3, -2.0))),// 创建密集向量Vectors.dense(4.0, 5.0, 0.0, 3.0),Vectors.dense(6.0, 7.0, 0.0, 8.0),Vectors.sparse(4, Seq((0, 9.0), (3, 1.0))))val df = data.map(Tuple1.apply).toDF("features")val Row(coeff1: Matrix) = Correlation.corr(df, "features").headprintln(s"Person correlation matrix:\n $coeff1")val Row(coeff2: Matrix) = Correlation.corr(df, "features", "spearman").headprintln(s"Spearman correlation matrix:\n $coeff2")}
}

假设检验

假设检验是统计学中一种强有力的工具,用于确定一个结果是否具有统计学意义,即这个结果是偶然发生的还是有一定的必然性。Spark ML目前支持用于独立性检验的皮尔逊卡方(χ²)检验。

卡方检验

卡方检验对每个特征与标签之间是否独立进行皮尔逊独立性检验。对于每个特征,将(特征,标签)对转换成列联表,然后计算卡方统计量。所有的标签和特征值必须是分类的。

Refer to the ChiSquareTest Scala docs for details on the API.


import org.apache.spark.ml.linalg.{Vector, Vectors}
import org.apache.spark.ml.stat.ChiSquareTest
import org.apache.spark.sql.SparkSession/*** @description 卡方校验* @date 2024/1/31 14:57* @author by fangwen1*/
object ChiSquareTestExample {def main(args: Array[String]): Unit = {val spark = SparkSession.builder.master("local[*]").appName("CorrelationExample").getOrCreate()import spark.implicits._val data = Seq((0.0, Vectors.dense(0.5, 10.0)),(0.0, Vectors.dense(1.5, 20.0)),(1.0, Vectors.dense(1.5, 30.0)),(0.0, Vectors.dense(3.5, 30.0)),(0.0, Vectors.dense(3.5, 40.0)),(1.0, Vectors.dense(3.5, 40.0)))val df = data.toDF("label", "features")val chiDf = ChiSquareTest.test(df, "features", "label")chiDf.printSchema()val chi = chiDf.head()println(s"pValues = ${chi.getAs[Vector](0)}")println(s"degreesOfFreedom = ${chi.getSeq[Int](1).mkString("[",",","]")}")println(s"statistics = ${chi.getAs[Vector](2)}")}
}

Summarizer(概述器)

我们通过概述器为数据帧提供向量列的汇总统计信息。可用的指标包括列最大值、最小值、平均值、总和、方差、标准差以及非零元素的数量,还有总计数。


import org.apache.spark.ml.linalg.{Vector, Vectors}
import org.apache.spark.ml.stat.Summarizer.{mean, metrics, variance}
import org.apache.spark.sql.SparkSession/*** @description 概述器* @date 2024/1/31 15:09* @author by fangwen1*/
object SummarizerExample {def main(args: Array[String]): Unit = {val spark = SparkSession.builder.master("local[*]").appName("SummarizerExample").getOrCreate()import spark.implicits._val data = Seq((Vectors.dense(2.0, 3.0, 5.0), 1.0),(Vectors.dense(4.0, 6.0, 7.0), 2.0))val df = data.toDF("features", "weight")//mean: 用于计算向量列的均值。//metrics: 允许用户指定需要计算的多个统计量,例如均值、方差、总和等。//variance: 用于计算向量列的方差。val (meanVal, varianceVal) = df.select(metrics("mean", "variance").summary($"features", $"weight").as("summary")).select("summary.mean", "summary.variance").as[(Vector, Vector)].first()println(s"with weight: mean = ${meanVal}, variance = ${varianceVal}")val (meanVal2, varianceVal2) = df.select(mean($"features"), variance($"features")).as[(Vector, Vector)].first()println(s"without weight: mean = ${meanVal2}, sum = ${varianceVal2}")}
}

这篇关于【SparkML系列1】相关性、卡方检验和概述器实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/666667

相关文章

golang版本升级如何实现

《golang版本升级如何实现》:本文主要介绍golang版本升级如何实现问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录golanwww.chinasem.cng版本升级linux上golang版本升级删除golang旧版本安装golang最新版本总结gola

SpringBoot中SM2公钥加密、私钥解密的实现示例详解

《SpringBoot中SM2公钥加密、私钥解密的实现示例详解》本文介绍了如何在SpringBoot项目中实现SM2公钥加密和私钥解密的功能,通过使用Hutool库和BouncyCastle依赖,简化... 目录一、前言1、加密信息(示例)2、加密结果(示例)二、实现代码1、yml文件配置2、创建SM2工具

Mysql实现范围分区表(新增、删除、重组、查看)

《Mysql实现范围分区表(新增、删除、重组、查看)》MySQL分区表的四种类型(范围、哈希、列表、键值),主要介绍了范围分区的创建、查询、添加、删除及重组织操作,具有一定的参考价值,感兴趣的可以了解... 目录一、mysql分区表分类二、范围分区(Range Partitioning1、新建分区表:2、分

MySQL 定时新增分区的实现示例

《MySQL定时新增分区的实现示例》本文主要介绍了通过存储过程和定时任务实现MySQL分区的自动创建,解决大数据量下手动维护的繁琐问题,具有一定的参考价值,感兴趣的可以了解一下... mysql创建好分区之后,有时候会需要自动创建分区。比如,一些表数据量非常大,有些数据是热点数据,按照日期分区MululbU

MySQL中查找重复值的实现

《MySQL中查找重复值的实现》查找重复值是一项常见需求,比如在数据清理、数据分析、数据质量检查等场景下,我们常常需要找出表中某列或多列的重复值,具有一定的参考价值,感兴趣的可以了解一下... 目录技术背景实现步骤方法一:使用GROUP BY和HAVING子句方法二:仅返回重复值方法三:返回完整记录方法四:

IDEA中新建/切换Git分支的实现步骤

《IDEA中新建/切换Git分支的实现步骤》本文主要介绍了IDEA中新建/切换Git分支的实现步骤,通过菜单创建新分支并选择是否切换,创建后在Git详情或右键Checkout中切换分支,感兴趣的可以了... 前提:项目已被Git托管1、点击上方栏Git->NewBrancjsh...2、输入新的分支的

Python实现对阿里云OSS对象存储的操作详解

《Python实现对阿里云OSS对象存储的操作详解》这篇文章主要为大家详细介绍了Python实现对阿里云OSS对象存储的操作相关知识,包括连接,上传,下载,列举等功能,感兴趣的小伙伴可以了解下... 目录一、直接使用代码二、详细使用1. 环境准备2. 初始化配置3. bucket配置创建4. 文件上传到os

关于集合与数组转换实现方法

《关于集合与数组转换实现方法》:本文主要介绍关于集合与数组转换实现方法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、Arrays.asList()1.1、方法作用1.2、内部实现1.3、修改元素的影响1.4、注意事项2、list.toArray()2.1、方

使用Python实现可恢复式多线程下载器

《使用Python实现可恢复式多线程下载器》在数字时代,大文件下载已成为日常操作,本文将手把手教你用Python打造专业级下载器,实现断点续传,多线程加速,速度限制等功能,感兴趣的小伙伴可以了解下... 目录一、智能续传:从崩溃边缘抢救进度二、多线程加速:榨干网络带宽三、速度控制:做网络的好邻居四、终端交互

java实现docker镜像上传到harbor仓库的方式

《java实现docker镜像上传到harbor仓库的方式》:本文主要介绍java实现docker镜像上传到harbor仓库的方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录1. 前 言2. 编写工具类2.1 引入依赖包2.2 使用当前服务器的docker环境推送镜像2.2