【SparkML系列1】相关性、卡方检验和概述器实现

2024-02-01 08:28

本文主要是介绍【SparkML系列1】相关性、卡方检验和概述器实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Correlation(相关性)

计算两组数据之间的相关性在统计学中是一种常见的操作。在spark.ml中,我们提供了计算多组数据之间成对相关性的灵活性。目前支持的相关性方法是皮尔逊(Pearson)相关系数和斯皮尔曼(Spearman)相关系数。

相关性计算使用指定的方法为输入的向量数据集计算相关性矩阵。输出将是一个数据框,其中包含向量列的相关性矩阵。


import org.apache.spark.ml.linalg.{Matrix, Vectors}
import org.apache.spark.ml.stat.Correlation
import org.apache.spark.sql.{Row, SparkSession}/*** @description 相关性测试* @date 2024/1/31 14:32* @author by fangwen1*/
object CorrelationExample {def main(args: Array[String]): Unit = {val spark = SparkSession.builder.master("local[*]").appName("CorrelationExample").getOrCreate()import spark.implicits._val data = Seq(// 创建稀疏向量Vectors.sparse(4, Seq((0, 1.0), (3, -2.0))),// 创建密集向量Vectors.dense(4.0, 5.0, 0.0, 3.0),Vectors.dense(6.0, 7.0, 0.0, 8.0),Vectors.sparse(4, Seq((0, 9.0), (3, 1.0))))val df = data.map(Tuple1.apply).toDF("features")val Row(coeff1: Matrix) = Correlation.corr(df, "features").headprintln(s"Person correlation matrix:\n $coeff1")val Row(coeff2: Matrix) = Correlation.corr(df, "features", "spearman").headprintln(s"Spearman correlation matrix:\n $coeff2")}
}

假设检验

假设检验是统计学中一种强有力的工具,用于确定一个结果是否具有统计学意义,即这个结果是偶然发生的还是有一定的必然性。Spark ML目前支持用于独立性检验的皮尔逊卡方(χ²)检验。

卡方检验

卡方检验对每个特征与标签之间是否独立进行皮尔逊独立性检验。对于每个特征,将(特征,标签)对转换成列联表,然后计算卡方统计量。所有的标签和特征值必须是分类的。

Refer to the ChiSquareTest Scala docs for details on the API.


import org.apache.spark.ml.linalg.{Vector, Vectors}
import org.apache.spark.ml.stat.ChiSquareTest
import org.apache.spark.sql.SparkSession/*** @description 卡方校验* @date 2024/1/31 14:57* @author by fangwen1*/
object ChiSquareTestExample {def main(args: Array[String]): Unit = {val spark = SparkSession.builder.master("local[*]").appName("CorrelationExample").getOrCreate()import spark.implicits._val data = Seq((0.0, Vectors.dense(0.5, 10.0)),(0.0, Vectors.dense(1.5, 20.0)),(1.0, Vectors.dense(1.5, 30.0)),(0.0, Vectors.dense(3.5, 30.0)),(0.0, Vectors.dense(3.5, 40.0)),(1.0, Vectors.dense(3.5, 40.0)))val df = data.toDF("label", "features")val chiDf = ChiSquareTest.test(df, "features", "label")chiDf.printSchema()val chi = chiDf.head()println(s"pValues = ${chi.getAs[Vector](0)}")println(s"degreesOfFreedom = ${chi.getSeq[Int](1).mkString("[",",","]")}")println(s"statistics = ${chi.getAs[Vector](2)}")}
}

Summarizer(概述器)

我们通过概述器为数据帧提供向量列的汇总统计信息。可用的指标包括列最大值、最小值、平均值、总和、方差、标准差以及非零元素的数量,还有总计数。


import org.apache.spark.ml.linalg.{Vector, Vectors}
import org.apache.spark.ml.stat.Summarizer.{mean, metrics, variance}
import org.apache.spark.sql.SparkSession/*** @description 概述器* @date 2024/1/31 15:09* @author by fangwen1*/
object SummarizerExample {def main(args: Array[String]): Unit = {val spark = SparkSession.builder.master("local[*]").appName("SummarizerExample").getOrCreate()import spark.implicits._val data = Seq((Vectors.dense(2.0, 3.0, 5.0), 1.0),(Vectors.dense(4.0, 6.0, 7.0), 2.0))val df = data.toDF("features", "weight")//mean: 用于计算向量列的均值。//metrics: 允许用户指定需要计算的多个统计量,例如均值、方差、总和等。//variance: 用于计算向量列的方差。val (meanVal, varianceVal) = df.select(metrics("mean", "variance").summary($"features", $"weight").as("summary")).select("summary.mean", "summary.variance").as[(Vector, Vector)].first()println(s"with weight: mean = ${meanVal}, variance = ${varianceVal}")val (meanVal2, varianceVal2) = df.select(mean($"features"), variance($"features")).as[(Vector, Vector)].first()println(s"without weight: mean = ${meanVal2}, sum = ${varianceVal2}")}
}

这篇关于【SparkML系列1】相关性、卡方检验和概述器实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/666667

相关文章

python使用watchdog实现文件资源监控

《python使用watchdog实现文件资源监控》watchdog支持跨平台文件资源监控,可以检测指定文件夹下文件及文件夹变动,下面我们来看看Python如何使用watchdog实现文件资源监控吧... python文件监控库watchdogs简介随着Python在各种应用领域中的广泛使用,其生态环境也

el-select下拉选择缓存的实现

《el-select下拉选择缓存的实现》本文主要介绍了在使用el-select实现下拉选择缓存时遇到的问题及解决方案,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录项目场景:问题描述解决方案:项目场景:从左侧列表中选取字段填入右侧下拉多选框,用户可以对右侧

Python pyinstaller实现图形化打包工具

《Pythonpyinstaller实现图形化打包工具》:本文主要介绍一个使用PythonPYQT5制作的关于pyinstaller打包工具,代替传统的cmd黑窗口模式打包页面,实现更快捷方便的... 目录1.简介2.运行效果3.相关源码1.简介一个使用python PYQT5制作的关于pyinstall

使用Python实现大文件切片上传及断点续传的方法

《使用Python实现大文件切片上传及断点续传的方法》本文介绍了使用Python实现大文件切片上传及断点续传的方法,包括功能模块划分(获取上传文件接口状态、临时文件夹状态信息、切片上传、切片合并)、整... 目录概要整体架构流程技术细节获取上传文件状态接口获取临时文件夹状态信息接口切片上传功能文件合并功能小

python实现自动登录12306自动抢票功能

《python实现自动登录12306自动抢票功能》随着互联网技术的发展,越来越多的人选择通过网络平台购票,特别是在中国,12306作为官方火车票预订平台,承担了巨大的访问量,对于热门线路或者节假日出行... 目录一、遇到的问题?二、改进三、进阶–展望总结一、遇到的问题?1.url-正确的表头:就是首先ur

C#实现文件读写到SQLite数据库

《C#实现文件读写到SQLite数据库》这篇文章主要为大家详细介绍了使用C#将文件读写到SQLite数据库的几种方法,文中的示例代码讲解详细,感兴趣的小伙伴可以参考一下... 目录1. 使用 BLOB 存储文件2. 存储文件路径3. 分块存储文件《文件读写到SQLite数据库China编程的方法》博客中,介绍了文

Redis主从复制实现原理分析

《Redis主从复制实现原理分析》Redis主从复制通过Sync和CommandPropagate阶段实现数据同步,2.8版本后引入Psync指令,根据复制偏移量进行全量或部分同步,优化了数据传输效率... 目录Redis主DodMIK从复制实现原理实现原理Psync: 2.8版本后总结Redis主从复制实

JAVA利用顺序表实现“杨辉三角”的思路及代码示例

《JAVA利用顺序表实现“杨辉三角”的思路及代码示例》杨辉三角形是中国古代数学的杰出研究成果之一,是我国北宋数学家贾宪于1050年首先发现并使用的,:本文主要介绍JAVA利用顺序表实现杨辉三角的思... 目录一:“杨辉三角”题目链接二:题解代码:三:题解思路:总结一:“杨辉三角”题目链接题目链接:点击这里

基于Python实现PDF动画翻页效果的阅读器

《基于Python实现PDF动画翻页效果的阅读器》在这篇博客中,我们将深入分析一个基于wxPython实现的PDF阅读器程序,该程序支持加载PDF文件并显示页面内容,同时支持页面切换动画效果,文中有详... 目录全部代码代码结构初始化 UI 界面加载 PDF 文件显示 PDF 页面页面切换动画运行效果总结主

SpringBoot实现基于URL和IP的访问频率限制

《SpringBoot实现基于URL和IP的访问频率限制》在现代Web应用中,接口被恶意刷新或暴力请求是一种常见的攻击手段,为了保护系统资源,需要对接口的访问频率进行限制,下面我们就来看看如何使用... 目录1. 引言2. 项目依赖3. 配置 Redis4. 创建拦截器5. 注册拦截器6. 创建控制器8.