GAT学习:PyG实现multi-head GAT(二)

2024-02-01 08:18
文章标签 实现 学习 head multi pyg gat

本文主要是介绍GAT学习:PyG实现multi-head GAT(二),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

PyG实现GAT网络

  • 预备知识
  • 代码分析
    • GAT

接上篇学习笔记GAT学习:PyG实现GAT(图注意力神经网络)网络(一)为了使得Attention的效果更好,所以加入multi-head attention。画个图说明multi-head attention的工作原理。
在这里插入图片描述
其实就相当于并联了head_num个attention后,将每个attention层的输出特征拼接起来,然后再输入一个attenion层得到输出结果。

预备知识

关于GAT的原理等知识,参考我的上篇博客:PyG实现GAT(图注意力神经网络)网络(一)

代码分析

import torch
import math
from torch_geometric.nn import MessagePassing
from torch_geometric.utils import add_self_loops,degree
from torch_geometric.datasets import Planetoid
import ssl
import torch.nn.functional as Fclass GAL(MessagePassing):def __init__(self,in_features,out_featrues):super(GAL,self).__init__(aggr='add')self.a = torch.nn.Parameter(torch.zeros(size=(2*out_featrues, 1)))torch.nn.init.xavier_uniform_(self.a.data, gain=1.414)  # 初始化# 定义leakyrelu激活函数self.leakyrelu = torch.nn.LeakyReLU()self.linear=torch.nn.Linear(in_features,out_featrues)def forward(self,x,edge_index):x=self.linear(x)N=x.size()[0]row,col=edge_indexa_input = torch.cat([x[row], x[col]], dim=1)# [N, N, 1] => [N, N] 图注意力的相关系数(未归一化)temp=torch.mm(a_input,self.a).squeeze()e = self.leakyrelu(temp)#e_all为同一个节点与其全部邻居的计算的分数的和,用于计算归一化softmaxe_all=torch.zeros(x.size()[0])count = 0for i in col:e_all[i]+=e[count]count=count+1for i in range(len(e)):e[i]=math.exp(e[i])/math.exp(e_all[col[i]])return self.propagate(edge_index,x=x,norm=e)def message(self, x_j, norm):return norm.view(-1, 1) * x_jclass GAT(torch.nn.Module):def __init__(self, in_features, hid_features, out_features, n_heads):"""n_heads 表示有几个GAL层,最后进行拼接在一起,类似self-attention从不同的子空间进行抽取特征。"""super(GAT, self).__init__()# 定义multi-head的图注意力层self.attentions = [GAL(in_features, hid_features) for _ inrange(n_heads)]# 输出层,也通过图注意力层来实现,可实现分类、预测等功能self.out_att = GAL(hid_features * n_heads, out_features)def forward(self, x, edge_index):# 将每个head得到的x特征进行拼接x = torch.cat([att(x, edge_index) for att in self.attentions], dim=1)print('x.size after cat',x.size())x = F.elu(self.out_att(x,edge_index))  # 输出并激活print('x.size after elu',x.size())return F.log_softmax(x, dim=1)  # log_softmax速度变快,保持数值稳定class Net(torch.nn.Module):def __init__(self):super(Net, self).__init__()self.gat = GAT(dataset.num_node_features,16,7,4)def forward(self, data):x, edge_index = data.x, data.edge_indexx = F.dropout(x, training=self.training)x = self.gat(x, edge_index)print('X_GAT',x.size())return F.log_softmax(x, dim=1)ssl._create_default_https_context = ssl._create_unverified_context
dataset = Planetoid(root='Cora', name='Cora')
x=dataset[0].x
edge_index=dataset[0].edge_index
model=Net()
data=dataset[0]
out=Net()(data)
optimizer = torch.optim.Adam(model.parameters(), lr=0.01, weight_decay=5e-4)
model.train()
for epoch in range(2):optimizer.zero_grad()out = model(data)loss = F.nll_loss(out[data.train_mask], data.y[data.train_mask])loss.backward()optimizer.step()
model.eval()
_, pred = model(data).max(dim=1)
correct = int(pred[data.test_mask].eq(data.y[data.test_mask]).sum().item())
acc = correct/int(data.test_mask.sum())
print('Accuracy:{:.4f}'.format(acc))
>>>Accuracy:0.1930

GAT

class GAT(torch.nn.Module):def __init__(self, in_features, hid_features, out_features, n_heads):"""n_heads 表示有几个GAL层,最后进行拼接在一起,类似self-attention从不同的子空间进行抽取特征。"""super(GAT, self).__init__()# 定义multi-head的图注意力层self.attentions = [GAL(in_features, hid_features) for _ inrange(n_heads)]# 输出层,也通过图注意力层来实现,可实现分类、预测等功能self.out_att = GAL(hid_features * n_heads, out_features)def forward(self, x, edge_index):# 将每个head得到的x特征进行拼接x = torch.cat([att(x, edge_index) for att in self.attentions], dim=1)print('x.size after cat',x.size())x = F.elu(self.out_att(x,edge_index))  # 输出并激活print('x.size after elu',x.size())return F.log_softmax(x, dim=1)  # log_softmax速度变快,保持数值稳定
>>>x.size after cat torch.Size([2708, 64])
x.size after elu torch.Size([2708, 7])
x.size after cat torch.Size([2708, 64])
x.size after elu torch.Size([2708, 7])
x.size after cat torch.Size([2708, 64])
x.size after elu torch.Size([2708, 7])
x.size after cat torch.Size([2708, 64])
x.size after elu torch.Size([2708, 7])

这篇关于GAT学习:PyG实现multi-head GAT(二)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/666653

相关文章

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.

Python+PyQt5实现多屏幕协同播放功能

《Python+PyQt5实现多屏幕协同播放功能》在现代会议展示、数字广告、展览展示等场景中,多屏幕协同播放已成为刚需,下面我们就来看看如何利用Python和PyQt5开发一套功能强大的跨屏播控系统吧... 目录一、项目概述:突破传统播放限制二、核心技术解析2.1 多屏管理机制2.2 播放引擎设计2.3 专

Python实现无痛修改第三方库源码的方法详解

《Python实现无痛修改第三方库源码的方法详解》很多时候,我们下载的第三方库是不会有需求不满足的情况,但也有极少的情况,第三方库没有兼顾到需求,本文将介绍几个修改源码的操作,大家可以根据需求进行选择... 目录需求不符合模拟示例 1. 修改源文件2. 继承修改3. 猴子补丁4. 追踪局部变量需求不符合很

idea中创建新类时自动添加注释的实现

《idea中创建新类时自动添加注释的实现》在每次使用idea创建一个新类时,过了一段时间发现看不懂这个类是用来干嘛的,为了解决这个问题,我们可以设置在创建一个新类时自动添加注释,帮助我们理解这个类的用... 目录前言:详细操作:步骤一:点击上方的 文件(File),点击&nbmyHIgsp;设置(Setti

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

MySQL大表数据的分区与分库分表的实现

《MySQL大表数据的分区与分库分表的实现》数据库的分区和分库分表是两种常用的技术方案,本文主要介绍了MySQL大表数据的分区与分库分表的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有... 目录1. mysql大表数据的分区1.1 什么是分区?1.2 分区的类型1.3 分区的优点1.4 分

一文详解如何从零构建Spring Boot Starter并实现整合

《一文详解如何从零构建SpringBootStarter并实现整合》SpringBoot是一个开源的Java基础框架,用于创建独立、生产级的基于Spring框架的应用程序,:本文主要介绍如何从... 目录一、Spring Boot Starter的核心价值二、Starter项目创建全流程2.1 项目初始化(

Mysql删除几亿条数据表中的部分数据的方法实现

《Mysql删除几亿条数据表中的部分数据的方法实现》在MySQL中删除一个大表中的数据时,需要特别注意操作的性能和对系统的影响,本文主要介绍了Mysql删除几亿条数据表中的部分数据的方法实现,具有一定... 目录1、需求2、方案1. 使用 DELETE 语句分批删除2. 使用 INPLACE ALTER T

MySQL INSERT语句实现当记录不存在时插入的几种方法

《MySQLINSERT语句实现当记录不存在时插入的几种方法》MySQL的INSERT语句是用于向数据库表中插入新记录的关键命令,下面:本文主要介绍MySQLINSERT语句实现当记录不存在时... 目录使用 INSERT IGNORE使用 ON DUPLICATE KEY UPDATE使用 REPLACE

mysql数据库重置表主键id的实现

《mysql数据库重置表主键id的实现》在我们的开发过程中,难免在做测试的时候会生成一些杂乱无章的SQL主键数据,本文主要介绍了mysql数据库重置表主键id的实现,具有一定的参考价值,感兴趣的可以了... 目录关键语法演示案例在我们的开发过程中,难免在做测试的时候会生成一些杂乱无章的SQL主键数据,当我们