应用keras建立ANN模型.

2024-02-01 04:44
文章标签 应用 模型 建立 keras ann

本文主要是介绍应用keras建立ANN模型.,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

介绍: 

Keras是一个开源的神经网络库,它基于Python语言,并能够在多个深度学习框架上运行,包括TensorFlow、Theano和CNTK。Keras提供了一种简洁而高层次的API,使得用户能够快速构建、训练和部署神经网络模型。

Keras的设计理念是以用户友好和易用性为重点。它提供了一系列高层次的构建模块,可以快速创建各种类型的神经网络模型,如全连接神经网络、卷积神经网络和循环神经网络等。Keras还提供了丰富的预训练模型和工具,方便用户进行模型的迁移学习和迁移部署。

Keras的优点包括简单易用、高度模块化、可扩展性强、跨平台和与TensorFlow等深度学习框架无缝集成等。由于其灵活性和高效性,Keras已经成为了开发人员和研究人员最喜欢的深度学习框架之一。

建模: 

from numpy import loadtxt
import numpy as np
from keras.models import Sequential
from keras.layers import Dense# load the dataset
dataset = loadtxt('Lesson47-pima-indians-diabetes.data', delimiter=',')# split into input (X) and output (y) variables
X = dataset[:,0:8]
y = dataset[:,8]# define the keras model
model = Sequential()#串型神经网络
model.add(Dense(12, input_dim=8, activation='relu'))#第一层hidden layer1,12个节点输出,8个点输入
model.add(Dense(8, activation='relu'))#第二层hidden layer2,8个节点输出
model.add(Dense(1, activation='sigmoid'))#输出 sigmoid把数据弄为0~1之间,最后大于0.5的为1# compile the keras model
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])# fit the keras model on the dataset
model.fit(X, y, epochs=500)# evaluate the keras model
_, accuracy = model.evaluate(X, y)
print('Accuracy: %.2f' % (accuracy*100))

 

预测:

# make class predictions with the model
y_train_predict = model.predict(X)
a = np.ones(len(X))
b = a/2
c = np.insert(y_train_predict,0,b,axis=1)
predictions = np.argmax(c,axis=1)
predictions = predictions.reshape(len(X),1)
#print(y_train_predict)
# summarize the first 5 cases
for i in range(len(X)):print('%s => %d (expected %d)' % (X[i].tolist(), predictions[i], y[i]))

这篇关于应用keras建立ANN模型.的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/666116

相关文章

0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型的操作流程

《0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeekR1模型的操作流程》DeepSeekR1模型凭借其强大的自然语言处理能力,在未来具有广阔的应用前景,有望在多个领域发... 目录0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型,3步搞定一个应

Deepseek R1模型本地化部署+API接口调用详细教程(释放AI生产力)

《DeepseekR1模型本地化部署+API接口调用详细教程(释放AI生产力)》本文介绍了本地部署DeepSeekR1模型和通过API调用将其集成到VSCode中的过程,作者详细步骤展示了如何下载和... 目录前言一、deepseek R1模型与chatGPT o1系列模型对比二、本地部署步骤1.安装oll

Spring AI Alibaba接入大模型时的依赖问题小结

《SpringAIAlibaba接入大模型时的依赖问题小结》文章介绍了如何在pom.xml文件中配置SpringAIAlibaba依赖,并提供了一个示例pom.xml文件,同时,建议将Maven仓... 目录(一)pom.XML文件:(二)application.yml配置文件(一)pom.xml文件:首

如何在本地部署 DeepSeek Janus Pro 文生图大模型

《如何在本地部署DeepSeekJanusPro文生图大模型》DeepSeekJanusPro模型在本地成功部署,支持图片理解和文生图功能,通过Gradio界面进行交互,展示了其强大的多模态处... 目录什么是 Janus Pro1. 安装 conda2. 创建 python 虚拟环境3. 克隆 janus

本地私有化部署DeepSeek模型的详细教程

《本地私有化部署DeepSeek模型的详细教程》DeepSeek模型是一种强大的语言模型,本地私有化部署可以让用户在自己的环境中安全、高效地使用该模型,避免数据传输到外部带来的安全风险,同时也能根据自... 目录一、引言二、环境准备(一)硬件要求(二)软件要求(三)创建虚拟环境三、安装依赖库四、获取 Dee

DeepSeek模型本地部署的详细教程

《DeepSeek模型本地部署的详细教程》DeepSeek作为一款开源且性能强大的大语言模型,提供了灵活的本地部署方案,让用户能够在本地环境中高效运行模型,同时保护数据隐私,在本地成功部署DeepSe... 目录一、环境准备(一)硬件需求(二)软件依赖二、安装Ollama三、下载并部署DeepSeek模型选

5分钟获取deepseek api并搭建简易问答应用

《5分钟获取deepseekapi并搭建简易问答应用》本文主要介绍了5分钟获取deepseekapi并搭建简易问答应用,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需... 目录1、获取api2、获取base_url和chat_model3、配置模型参数方法一:终端中临时将加

JavaScript中的isTrusted属性及其应用场景详解

《JavaScript中的isTrusted属性及其应用场景详解》在现代Web开发中,JavaScript是构建交互式应用的核心语言,随着前端技术的不断发展,开发者需要处理越来越多的复杂场景,例如事件... 目录引言一、问题背景二、isTrusted 属性的来源与作用1. isTrusted 的定义2. 为

Python调用另一个py文件并传递参数常见的方法及其应用场景

《Python调用另一个py文件并传递参数常见的方法及其应用场景》:本文主要介绍在Python中调用另一个py文件并传递参数的几种常见方法,包括使用import语句、exec函数、subproce... 目录前言1. 使用import语句1.1 基本用法1.2 导入特定函数1.3 处理文件路径2. 使用ex

Golang的CSP模型简介(最新推荐)

《Golang的CSP模型简介(最新推荐)》Golang采用了CSP(CommunicatingSequentialProcesses,通信顺序进程)并发模型,通过goroutine和channe... 目录前言一、介绍1. 什么是 CSP 模型2. Goroutine3. Channel4. Channe