[机器学习]LFM梯度下降算法

2024-02-01 03:04

本文主要是介绍[机器学习]LFM梯度下降算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一.LFM梯度下降算法

2.代码实现

# 0. 引入依赖
import numpy as np
import pandas as pd# 1. 数据准备
# 评分矩阵R
R = np.array([[4,0,2,0,1],[0,2,3,0,0],[1,0,2,4,0],[5,0,0,3,1],[0,0,1,5,1],[0,3,2,4,1],])
# 二维数组小技巧:取行数R.shape[0]和len(R),列数R.shape[1]和len(R[0])# 2. 算法实现
"""
@输入参数:
R:M*N 的评分矩阵
K:隐特征向量维度
max_iter: 最大迭代次数
alpha:步长
lamda:正则化系数@输出:
分解之后的 P,Q
P:初始化用户特征矩阵M*K
Q:初始化物品特征矩阵N*K
"""# 给定超参数
K = 5
max_iter = 5000
alpha = 0.0002
lamda = 0.004# 核心算法
def LFM_grad_desc(R, K=2, max_iter=1000, alpha=0.0001, lamda=0.002):# 基本维度参数定义M = len(R)N = len(R[0])# P,Q初始值,随机生成一个M*K的矩阵P = np.random.rand(M, K)Q = np.random.rand(N, K)Q = Q.T # Q转置(变为K*M矩阵)# 开始迭代for step in range(max_iter):# 对所有的用户u、物品i做遍历,对应的特征向量Pu、Qi梯度下降for u in range(M):for i in range(N):# 对于每一个大于0的评分,求出预测评分误差,0分表示没评价过if R[u][i] > 0:eui = np.dot(P[u, :], Q[:, i]) - R[u][i] # 用户u对物品i的向量乘积减去该物品的实际评分# 代入公式,按照梯度下降算法更新当前的Pu、Qifor k in range(K):# 循环每一步都递减所以不用再求和然后再减去P[u][k] = P[u][k] - alpha * (2 * eui * Q[k][i] + 2 * lamda * P[u][k])Q[k][i] = Q[k][i] - alpha * (2 * eui * P[u][k] + 2 * lamda * Q[k][i])# u、i遍历完成,所有特征向量更新完成,可以得到P、Q,可以计算预测评分矩阵predR = np.dot(P, Q)# 计算当前损失函数cost = 0for u in range(M):for i in range(N):if R[u][i] > 0:cost += (np.dot(P[u, :], Q[:, i]) - R[u][i]) ** 2# 加上正则化项for k in range(K):cost += lamda * (P[u][k] ** 2 + Q[k][i] ** 2)if cost < 0.0001:breakreturn P, Q.T, cost# 3. 测试
P, Q, cost = LFM_grad_desc(R, K, max_iter, alpha, lamda)predR = P.dot(Q.T)print("P矩阵:\n",P)
print("Q矩阵:\n",Q)
print("评分矩阵:\n",R)
print("预测误差:",cost)
print("预测矩阵:\n",predR)

 P矩阵:
 [[ 1.00438746  0.80908498  1.03554314  0.75883908  0.65112987]
 [ 0.259309    0.30692238  0.84186825  1.31376124  1.07697641]
 [-0.35224656  1.12598736  1.00862706  0.26789057  0.88263718]
 [ 1.24601986 -0.30059379  0.33445767  1.04451048  1.21593543]
 [ 1.34112239  1.20429668  0.83579321  0.08691934  0.47363809]
 [ 0.90599105  0.81248866  0.39840001  0.55195613  1.0236363 ]]
Q矩阵:
 [[ 1.95601706 -0.06282288  0.57841689  1.04259243  1.03590011]
 [ 1.03926527  0.99645306  0.3604848   0.08656269  0.96649848]
 [-0.14436891  0.20787068  0.45512168  1.05211096  1.10490284]
 [ 0.96410499  1.56976268  1.44327334  0.39381784  1.11552898]
 [ 0.51741592  0.15695691  0.11513832  0.25747499  0.10010323]]
评分矩阵:
 [[4 0 2 0 1]
 [0 2 3 0 0]
 [1 0 2 4 0]
 [5 0 0 3 1]
 [0 0 1 5 1]
 [0 3 2 4 1]]
预测误差: 0.5744316139475661
预测矩阵:
 [[3.97841099 2.91834095 2.01229901 4.75817678 1.02647054]
 [3.46023939 2.03342405 2.9816934  3.6656234  0.72534497]
 [1.01729351 1.99576748 2.00104019 3.97376224 0.2679351 ]
 [4.99816259 2.38159984 2.3522792  2.97990494 1.02669353]
 [3.61230101 3.36039225 1.05188206 4.95230823 1.04896486]
 [3.58738259 2.93191072 1.93115385 4.0831511  0.88675521]]
 

这篇关于[机器学习]LFM梯度下降算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/665890

相关文章

pytorch自动求梯度autograd的实现

《pytorch自动求梯度autograd的实现》autograd是一个自动微分引擎,它可以自动计算张量的梯度,本文主要介绍了pytorch自动求梯度autograd的实现,具有一定的参考价值,感兴趣... autograd是pytorch构建神经网络的核心。在 PyTorch 中,结合以下代码例子,当你

openCV中KNN算法的实现

《openCV中KNN算法的实现》KNN算法是一种简单且常用的分类算法,本文主要介绍了openCV中KNN算法的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录KNN算法流程使用OpenCV实现KNNOpenCV 是一个开源的跨平台计算机视觉库,它提供了各

springboot+dubbo实现时间轮算法

《springboot+dubbo实现时间轮算法》时间轮是一种高效利用线程资源进行批量化调度的算法,本文主要介绍了springboot+dubbo实现时间轮算法,文中通过示例代码介绍的非常详细,对大家... 目录前言一、参数说明二、具体实现1、HashedwheelTimer2、createWheel3、n

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时

Java进阶学习之如何开启远程调式

《Java进阶学习之如何开启远程调式》Java开发中的远程调试是一项至关重要的技能,特别是在处理生产环境的问题或者协作开发时,:本文主要介绍Java进阶学习之如何开启远程调式的相关资料,需要的朋友... 目录概述Java远程调试的开启与底层原理开启Java远程调试底层原理JVM参数总结&nbsMbKKXJx

如何通过Golang的container/list实现LRU缓存算法

《如何通过Golang的container/list实现LRU缓存算法》文章介绍了Go语言中container/list包实现的双向链表,并探讨了如何使用链表实现LRU缓存,LRU缓存通过维护一个双向... 目录力扣:146. LRU 缓存主要结构 List 和 Element常用方法1. 初始化链表2.

golang字符串匹配算法解读

《golang字符串匹配算法解读》文章介绍了字符串匹配算法的原理,特别是Knuth-Morris-Pratt(KMP)算法,该算法通过构建模式串的前缀表来减少匹配时的不必要的字符比较,从而提高效率,在... 目录简介KMP实现代码总结简介字符串匹配算法主要用于在一个较长的文本串中查找一个较短的字符串(称为

通俗易懂的Java常见限流算法具体实现

《通俗易懂的Java常见限流算法具体实现》:本文主要介绍Java常见限流算法具体实现的相关资料,包括漏桶算法、令牌桶算法、Nginx限流和Redis+Lua限流的实现原理和具体步骤,并比较了它们的... 目录一、漏桶算法1.漏桶算法的思想和原理2.具体实现二、令牌桶算法1.令牌桶算法流程:2.具体实现2.1

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操