Boundry attention: 泛化能力很强的边缘检测模块

2024-01-31 07:04

本文主要是介绍Boundry attention: 泛化能力很强的边缘检测模块,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

原文链接:Boundary attention:: Learning to Find Faint Boundaries at Any Resolution

本文提出的模型泛化性好,即使只在合成的图案简单的图片上训练,在复杂的真实图上做检测也能得到较好的边界。

细节部分:

不同于viT把图片切成小patch,然后映射为token,而是每个像素都有一个token。
(文章说的dense,stride-1的token)

每个像素的token,设计为表达局部几何结构的特征空间,表征以自己为中心的正方形区域内的局部结构。

提出bottleneck:将图像的token映射到低维空间,这里设计这个空间为junction space

junction space:

用一些参数,代表了一些可能的几何边缘结构。比如什么都没有,边,角,T结,Y结。(这些几何结构够了吗?能不能通过kmeans聚类得到最佳的参数空间大小?)
这些参数3.1 包括点位置u=(u,v)点是相对patch中的中心像素的;线的方向theta;线顺时针旋转产生另外两条线,夹角依次为o1、2、3(因为最多产生三条线,所以最多表达三部分,比如T、Y结)。
⁃ 这些参数表达的几何结构种类是有限的,每一种文中叫做
wedge。

f-n代表输入图像
s-nj代表像素x在像素n的领域内,且属于第j个wedge,就=1.(j能离散?)(具体函数在附录,代表)
d-n代表像素x离最近的边界的欧式距离。这里的边界就是jspace中的线。

每个像素的region的大小,设计成自适应的。(这里能用那个blur-scale改,合理吗)用函数window function:w-n表示。这个函数定义为一个凸函数:分三个级别衡量size(D=3,9,17)。如果距离中心像素的大小小于某个size,就加上对应的系数。
⁃ 大小由regionsize决定,同时,结果又决定了region size
boundry attention是neighborhood corss-attetnion:cross-attention的一种变体。

结构:先把token用训练好的线性映射patch FFN变到junction space。

gather operator:对patch进行计算wedge feature。新的fkj=在图f上,patch包括的像素值,每个像素的window function作为权,f作为值的加权平均。
⁃ input:feature图、window function图p、wedge图g。
⁃ output:更新的feature

slice operator:对每个像素进行计算。算包含他的所有region的某个值的mean,variance。这个值有两个:distance map和wedge feature。
在这里对每个patchk要进行加权计算,对他有贡献的是包含这个patch中心点n的所有patches,不只他自己。
⁃ input:distance map d,window function图p,wedge图g;feature map一样的
⁃ output:distance map d的均值、方差;feature map的均值、方差。
这两个operator得到distance map、feature的方差。

期望输出:
期望重叠区(每个pixel又一个region)的边界是一样的。所以让上面得到的两个输出方差很小。

对上面distance map和wedge feature经过attention输出的均值的:
⁃ 像素n的feature mean是对包含他的领域中每个wedge feature的权重求和。(attention是对邻居的不同的注意力)

图片解释:
⁃ 第二行的图,对应选取的区域,颜色都一样,所以他的第一个window function很大?对应window中的边缘(第二张图)是快到花瓣边缘了。

整个网络要迭代g,p表示。迭代window function的系数和junction 空间的表示。为什么不能直接计算?因为直接计算太难了?不是,因为根本无法计算,只能让网络迭代得到最好的g(关注该范围的参数是多少)最好的p(关注多大的范围),以及考虑邻居信息的feature

网络输入像素,经过MLPmix输出hidden state。
然后attention8次迭代g和p(wedge feature和window size参数):

每个boundry attention:

使用跳跃连接;
把hidden state copy两份,一份+window token(pai),林一份+global feature f。分别经过MLP。
window tkoen作为Q,global feature作为KV。
window token(size, 1):前面提到过每个pixel n都作为query。
global feature分割为11大小的patch,两者做cross-ttetnion:每个像素n(query)的考虑了邻居的特征的新特征是什么?

还给global feature的patch加了positional encoding。

attention输出的hidden state得最后8维是window token。他们两个经过线性层,映射回junciton space的参数表示g。得到的g可以进行gather和slice opartor。

训练过程:
一共有一个MLPmix,两个boundry attention。总共进行8次迭代。
第一阶段迭代4次:线MLP-mixer和第一个attention一起训练;在第3,4迭代使用loss
第二阶段在迭代4次:然后再加第二个attention进行端到端的训练。在第7,8迭代使用loss
最后一次迭代的loss比前几次迭代的都权重大。
(一开始输入-MLPmixer,attention-再返回给attention-在返回给attention(此时计算loss1)-在返回给attention(此时计算loss2),加上第二个attetnion,返回头部端到端输出-在返回头部端到端输出-在返回头部端到端输出(此时计算loss3)-在返回头部端到端输出(此时计算loss4),最后loss应该是loss1-4的和)
(可能因为全部端到端训练,太难了?)

loss12是监督loss:包括feature和distance map的GT(这个他怎么得到的?)

每个loss包括像素级和patch级别的feature loss和distance map loss。让输入接近GT。还有他们对应的方差loss,让其尽量为0.

实验细节:
合成有15-20种几何图形的图片,变成灰度图,参见裁剪25*125大小,作为输入。
数据集10^5,90%作为训练。
⁃ 给图片加noise,让网络实现得到和无噪声一样的feature map,distance map。

结果:
1. 验证对噪声的抗干扰性能
和EDTRE、去噪的EDTRE对比
和类似原理但不是深度学习的filed of junction做对比。

2.	验证去噪检测时仍然存在的亚像素精度

在小image上检测,上采样放大边缘也很好。

3.	可视化hidden state,发现确实学到了junction space。而且直接对值进行差值,能得到连续的junction(可视化就是直接把hiddenstate值作为参数进行画?4.	在真实图像上

没和其他网络比较对真实图像的检测,而是比较了加噪声后的表现。

5.	推理时间等等

补充材料:
1. junction space
junction空间的几何表示,可以有M种,本文用的是M=3

参数空间有一些等价表示。
这里没看懂

Mjunction是更大的M‘的子集(训练时还可以提高M试一试)

在Mjucntion参数空间中,能直接计算出central 方向和边界boundary方向

和filed of junction那篇在junction space上的比较:参数空间多了oemga,这样就不用限制fai的范围。

这个参数空间的表示允许线性插值

2.	训练数据

合成数据集Kaleidoshapes

3.	模型细节

输入3通道图像,每个像素映射为64维。
经过一个zero-padding处理(补充边界)。
然后MLPmix:两个neighbor mixing blocks:每个包括空间patch mixer和channelmixer。前者是用两个3*3空间卷积+GELU实现。
channelmixer是每个像素输入的MLP。
最后剪掉包含了原图之外信息的patches。

训练细节:
第一阶段
训练只用kal数据集的简化版(100*100大小,加了高斯噪声,)用等式9,10的loss。让网络学到有意义的hidden state gamma,避免jucntion的collapse。让网络关注边界一致性loss(方差loss-0),学习无边界patch。

数据存在不平衡:只有一部分有边界信息。所以加一个额外的空间importance mask给有边界的区域更多关注。(用过gaussian产生这个mask?)把mask以常数C加在loss上。

第二阶段:
加另一个block,用全部iamge和loss。
也用了空间importance mask

这篇关于Boundry attention: 泛化能力很强的边缘检测模块的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/662933

相关文章

Python中logging模块用法示例总结

《Python中logging模块用法示例总结》在Python中logging模块是一个强大的日志记录工具,它允许用户将程序运行期间产生的日志信息输出到控制台或者写入到文件中,:本文主要介绍Pyt... 目录前言一. 基本使用1. 五种日志等级2.  设置报告等级3. 自定义格式4. C语言风格的格式化方法

Python 基于http.server模块实现简单http服务的代码举例

《Python基于http.server模块实现简单http服务的代码举例》Pythonhttp.server模块通过继承BaseHTTPRequestHandler处理HTTP请求,使用Threa... 目录测试环境代码实现相关介绍模块简介类及相关函数简介参考链接测试环境win11专业版python

Python脚本轻松实现检测麦克风功能

《Python脚本轻松实现检测麦克风功能》在进行音频处理或开发需要使用麦克风的应用程序时,确保麦克风功能正常是非常重要的,本文将介绍一个简单的Python脚本,能够帮助我们检测本地麦克风的功能,需要的... 目录轻松检测麦克风功能脚本介绍一、python环境准备二、代码解析三、使用方法四、知识扩展轻松检测麦

Nginx添加内置模块过程

《Nginx添加内置模块过程》文章指导如何检查并添加Nginx的with-http_gzip_static模块:确认该模块未默认安装后,需下载同版本源码重新编译,备份替换原有二进制文件,最后重启服务验... 目录1、查看Nginx已编辑的模块2、Nginx官网查看内置模块3、停止Nginx服务4、Nginx

python urllib模块使用操作方法

《pythonurllib模块使用操作方法》Python提供了多个库用于处理URL,常用的有urllib、requests和urlparse(Python3中为urllib.parse),下面是这些... 目录URL 处理库urllib 模块requests 库urlparse 和 urljoin编码和解码

创建springBoot模块没有目录结构的解决方案

《创建springBoot模块没有目录结构的解决方案》2023版IntelliJIDEA创建模块时可能出现目录结构识别错误,导致文件显示异常,解决方法为选择模块后点击确认,重新校准项目结构设置,确保源... 目录创建spChina编程ringBoot模块没有目录结构解决方案总结创建springBoot模块没有目录

idea Maven Springboot多模块项目打包时90%的问题及解决方案

《ideaMavenSpringboot多模块项目打包时90%的问题及解决方案》:本文主要介绍ideaMavenSpringboot多模块项目打包时90%的问题及解决方案,具有很好的参考价值,... 目录1. 前言2. 问题3. 解决办法4. jar 包冲突总结1. 前言之所以写这篇文章是因为在使用Mav

Python标准库datetime模块日期和时间数据类型解读

《Python标准库datetime模块日期和时间数据类型解读》文章介绍Python中datetime模块的date、time、datetime类,用于处理日期、时间及日期时间结合体,通过属性获取时间... 目录Datetime常用类日期date类型使用时间 time 类型使用日期和时间的结合体–日期时间(

Python通用唯一标识符模块uuid使用案例详解

《Python通用唯一标识符模块uuid使用案例详解》Pythonuuid模块用于生成128位全局唯一标识符,支持UUID1-5版本,适用于分布式系统、数据库主键等场景,需注意隐私、碰撞概率及存储优... 目录简介核心功能1. UUID版本2. UUID属性3. 命名空间使用场景1. 生成唯一标识符2. 数

Linux系统性能检测命令详解

《Linux系统性能检测命令详解》本文介绍了Linux系统常用的监控命令(如top、vmstat、iostat、htop等)及其参数功能,涵盖进程状态、内存使用、磁盘I/O、系统负载等多维度资源监控,... 目录toppsuptimevmstatIOStatiotopslabtophtopdstatnmon