用BitMap结构实现快速取差集

2024-01-31 06:12

本文主要是介绍用BitMap结构实现快速取差集,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在流式计算对比基线无数据告警场景中,利用基线数据对比来源数据,如果发现该时间窗口内的数据不在基线数据中则产生告警,因此基线数据和来源数据需要进行对比计算,基线数据去掉来源数据中已有的数据,余下的数据作为产生的告警数据。在数据量较小时直接进行集合运算取差集即可,但是但基线数据和来源数据量达百万甚至千万时则计算缓慢,出现延时,因此需要找到其它方式方法。

基线数据的定义:
基线数据是一组带时分的时序数据,时分是根据配置对24小时进行分割得到,比如配置1分钟内没数据则告警,则24小时按1分钟进行分割,则分割成00:01, 00:02…的时序数据,总共1440条记录,1440条表示每个1分钟窗口内有一条数据。配置5分钟内没数据则告警,则按5分钟进行分割,则分割成00:05, 00:10…的时序数据,每个时间窗口内有且仅有一条数据。每个任务对应一组基线数据。

假设基线数据量为一百万条,窗口内来源数据为九十九万九千条,基线数据中移除来源数据即取差集后则只有一千条。

2.1 集合的取差集方法
1)List.removeAll(sublist)方法取差集

private static void testRemoveAll() {List<String> listA = new ArrayList<>();for(int i=0;i<OneMillion;i++){ //随机创建百万条基线数据String key1="ip(192.168.199.10"+i+")#port("+i+")#service_name(orcl)#time(23:30:00)"+i;listA.add(key1);}//从百万条基线数据中随机获取九十九万九千条作为来源数据List<String> listB = createRandomList(listA,999000);Date date = new Date();listA.removeAll(listB);Date date1 = new Date();System.out.println("testRemoveAll:"+(date1.getTime()-date.getTime())/1000+"秒");System.out.println(listA.size());
}

测试结果:
30分钟未计算出结果,手动kill程序。

2)List.removeAll(new HashSet(sublist))方法取差集
分析removeAll方法的源码,发现removeAll方法中有subList.contain(value)的方法,如果subList为list集合,则调用indexOf()方法,一个一个地遍历查找。最坏时间复杂度为O(总数据量)。如果先将subList转为HashSet,在调用contain方法时,则时间复杂度为O(1),加快对比计算速度。

private static void testRemoveAll() {List<String> listA = new ArrayList<>();for(int i=0;i<OneMillion;i++){ //随机创建百万条基线数据String key1="ip(192.168.xxx.10"+i+")#port("+i+")#service_name(orcl)#time(23:30:00)"+i;listA.add(key1);}//从百万条基线数据中随机获取九十九万九千条作为来源数据List<String> listB = createRandomList(listA,999000);Date date = new Date();//listA.removeAll(listB);listA.removeAll(new HashSet(listB));Date date1 = new Date();System.out.println("testRemoveAll:"+(date1.getTime()-date.getTime())/1000+"秒");System.out.println(listA.size());
}
//0.3秒

测试结果:
计算耗时仅0.3s,这个结果相比上一步有巨大提升。

2.2 BitMap的取差集方法
BitMap,直译为位图,是一种数据结构,代表了有限域中的稠集(Dense Set),每一个元素至少出现一次,没有其他的数据和元素相关联。在索引,数据压缩等方面有广泛应用。
计算机中1 byte = 8 bit,一个比特(bit,称为比特或者位)可以表示1或者0两种值,通过一个比特去标记某个元素的值,而KEY或者INDEX就是该元素,构成一张映射关系图。因为采用了Bit作为底层存储数据的单位,所以可以极大地节省存储空间。同时还支持去重,交集,差集等各种运算Bitmap的实现有很多,例如Java原生的BitSet,第三方的RoaingBitmap等。

1)Java原生的BitSet

private static void testBitSet() {List<String> listA = new ArrayList<>();BitSet bitmap = new BitSet();for(int i=0;i<OneMillion;i++){String key1="ip(192.168.XXX.10"+i+")#port("+i+")#service_name(orcl)#time(23:30:00)"+i;bitmap.set(Math.abs(key1.hashCode()));listA.add(key1);}BitSet bitmap1 = new BitSet();List<String> listB = createRandomList(listA,999000);for(String s:listB){bitmap1.set(Math.abs(s.hashCode()));}Date date = new Date();bitmap.andNot(bitmap1);Date date1 = new Date();System.out.println("testBitSet:"+(double)(date1.getTime()-date.getTime())/1000+"秒");
}
//testBitSet:0.02秒

测试结果:
计算耗时仅0.02s,这个结果相比上一步时间缩短一个数量级。
2)RoaingBitmap
Bitmap的主要缺陷是占用大量的内存空间。Bitmap是一种使用位图来表示数据集合的数据结构,每个位代表一个元素的存在与否。当数据集合很大时,Bitmap需要使用大量的位来表示,导致内存占用较高。
RoaringBitmap是一种改进的Bitmap数据结构,它能够解决Bitmap的内存占用问题。RoaringBitmap使用了一种压缩算法,能够有效地压缩位图数据,减少内存占用。具体来说,RoaringBitmap将位图分成多个块,每个块使用不同的压缩算法进行压缩。这样,当数据集合中存在大量连续的元素时,RoaringBitmap能够更好地压缩数据,减少内存占用。另外,RoaringBitmap还支持快速的位图操作,如并集、交集和差集等,使得对数据集合的操作更加高效。RoaringBitmap还支持动态增长,可以动态地添加和删除元素,而不需要重新分配内存。
总的来说,RoaringBitmap通过压缩算法和优化的位图操作,能够有效地解决Bitmap的内存占用问题,提高了位图数据结构的性能和可扩展性。

private static void testRoaringBitmap() {List<String> listA = new ArrayList<>();RoaringBitmap bitmap = new RoaringBitmap();for(int i=0;i<OneMillion;i++){String key1="ip(192.168.xxx.10"+i+")#port("+i+")#service_name(orcl)#time(23:30:00)"+i;bitmap.add(Math.abs(key1.hashCode()));listA.add(key1);}RoaringBitmap bitmap1 = new RoaringBitmap();List<String> listB = createRandomList(listA,999000);for(String s:listB){bitmap1.add(Math.abs(s.hashCode()));}Date date = new Date();bitmap.andNot(bitmap1);Date date1 = new Date();System.out.println("testRoaringBitmap:"+(double)(date1.getTime()-date.getTime())/1000+"秒");
}
//testRoaringBitmap:0.022秒

测试结果:
计算耗时仅0.022s,这个结果和Java原生的BitSet时间基本相同。
总 结:
通过上述测试对比,相比其它方式采用BitMap和升级的RoaingBitmap在时间上能缩小一个数量级,效果十分明显,但是使用BitMap和RoaingBitmap存在的问题是BitMap结构只支持数字,如果是字符串需要先将字符串转成数字,字符串转数字时有一定的概率出现hash碰撞(不同的字符串转成相同的数字),因此如果能允许一定的误差,用Bitmap和RoaingBitmap是最快的。

这篇关于用BitMap结构实现快速取差集的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/662801

相关文章

MyBatis-Plus逻辑删除实现过程

《MyBatis-Plus逻辑删除实现过程》本文介绍了MyBatis-Plus如何实现逻辑删除功能,包括自动填充字段、配置与实现步骤、常见应用场景,并展示了如何使用remove方法进行逻辑删除,逻辑删... 目录1. 逻辑删除的必要性编程1.1 逻辑删除的定义1.2 逻辑删php除的优点1.3 适用场景2.

C#借助Spire.XLS for .NET实现在Excel中添加文档属性

《C#借助Spire.XLSfor.NET实现在Excel中添加文档属性》在日常的数据处理和项目管理中,Excel文档扮演着举足轻重的角色,本文将深入探讨如何在C#中借助强大的第三方库Spire.... 目录为什么需要程序化添加Excel文档属性使用Spire.XLS for .NET库实现文档属性管理Sp

Python+FFmpeg实现视频自动化处理的完整指南

《Python+FFmpeg实现视频自动化处理的完整指南》本文总结了一套在Python中使用subprocess.run调用FFmpeg进行视频自动化处理的解决方案,涵盖了跨平台硬件加速、中间素材处理... 目录一、 跨平台硬件加速:统一接口设计1. 核心映射逻辑2. python 实现代码二、 中间素材处

Java数组动态扩容的实现示例

《Java数组动态扩容的实现示例》本文主要介绍了Java数组动态扩容的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录1 问题2 方法3 结语1 问题实现动态的给数组添加元素效果,实现对数组扩容,原始数组使用静态分配

Python实现快速扫描目标主机的开放端口和服务

《Python实现快速扫描目标主机的开放端口和服务》这篇文章主要为大家详细介绍了如何使用Python编写一个功能强大的端口扫描器脚本,实现快速扫描目标主机的开放端口和服务,感兴趣的小伙伴可以了解下... 目录功能介绍场景应用1. 网络安全审计2. 系统管理维护3. 网络故障排查4. 合规性检查报错处理1.

MySQL快速复制一张表的四种核心方法(包括表结构和数据)

《MySQL快速复制一张表的四种核心方法(包括表结构和数据)》本文详细介绍了四种复制MySQL表(结构+数据)的方法,并对每种方法进行了对比分析,适用于不同场景和数据量的复制需求,特别是针对超大表(1... 目录一、mysql 复制表(结构+数据)的 4 种核心方法(面试结构化回答)方法 1:CREATE

Python轻松实现Word到Markdown的转换

《Python轻松实现Word到Markdown的转换》在文档管理、内容发布等场景中,将Word转换为Markdown格式是常见需求,本文将介绍如何使用FreeSpire.DocforPython实现... 目录一、工具简介二、核心转换实现1. 基础单文件转换2. 批量转换Word文件三、工具特性分析优点局

Springboot3统一返回类设计全过程(从问题到实现)

《Springboot3统一返回类设计全过程(从问题到实现)》文章介绍了如何在SpringBoot3中设计一个统一返回类,以实现前后端接口返回格式的一致性,该类包含状态码、描述信息、业务数据和时间戳,... 目录Spring Boot 3 统一返回类设计:从问题到实现一、核心需求:统一返回类要解决什么问题?

Java使用Spire.Doc for Java实现Word自动化插入图片

《Java使用Spire.DocforJava实现Word自动化插入图片》在日常工作中,Word文档是不可或缺的工具,而图片作为信息传达的重要载体,其在文档中的插入与布局显得尤为关键,下面我们就来... 目录1. Spire.Doc for Java库介绍与安装2. 使用特定的环绕方式插入图片3. 在指定位

Java使用Spire.Barcode for Java实现条形码生成与识别

《Java使用Spire.BarcodeforJava实现条形码生成与识别》在现代商业和技术领域,条形码无处不在,本教程将引导您深入了解如何在您的Java项目中利用Spire.Barcodefor... 目录1. Spire.Barcode for Java 简介与环境配置2. 使用 Spire.Barco