光流估计中cost volume详解

2024-01-30 20:59
文章标签 详解 volume 估计 cost 光流

本文主要是介绍光流估计中cost volume详解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

原创声明:是暮涯啊 https://blog.csdn.net/longshaonihaoa/article/details/124726727

MEMC系列文章:
运动估计运动补偿(Motion estimation and motion compensation,MEMC)入门总结
深度学习MEMC插帧论文列表paper list
光流估计中cost volume详解
插帧中grid_sample函数详解

我认为之所以光流估计中会使用独有的cost volume,其初始形态是传统基于块的光流估计方法中,对每个前一帧图像F1中的某个块B1,计算其在一定范围内对应于后一帧图像2中哪个块B2最接近。假如B1的坐标为(x1,y1)B2的坐标为(x2,y2),对应这个块的光流矢量就是(x2-x1,y2-y1)。

1、FlowNet中的correlation

1.1 介绍

FlowNet作为光流估计的开山鼻祖,对correlation的计算花了大量篇幅。作者说这些分割啊,深度估计啊这些网络可以产生像素级预测,这说明NN用于得到像素级稠密光流估计是有可能的。那怎么涉及网络呢?一种是直接把前后帧图像F1F2堆叠后送到网络中,同时用GT的光流作为监督,让网络自己提取motion信息,也就是FlowNetSimple的结构。
原则上网络够大就行,但实际不确定行不行,所以退一步设计一个不那么通用,但效果好的网络。就先提取F1F2各自的有意义的特征,后来在将它们融合在一起。这大致类似于标准匹配方法,即首先从两个图像的块中提取特征,然后比较这些特征向量。接着就提出了灵魂疑问,怎么让网络计算特征间的相关性呢?
给定特征f1 f2,尺寸为WHC。correlation层计算f1的每个patch和f2的每个patch,现在只考虑f1中中心坐标为x1和f2中中心坐标为x2的两个patch之间的相关性。
请添加图片描述patch边长为K:=2k+1,该公式的定义就是一个卷积操作,只不过正常卷积使用filter卷data,这个使用其他data卷data。计算一个c(x1,x2)需要 c K 2 cK^2 cK2次乘操作(从这个计算量来看是per-channel操作),这还是一个点,如果计算全局就要 W 2 H 2 W^2H^2 W2H2次这样的操作。因此作者引入搜索范围和步长。对f2的搜索范围界定在D:=2d+1,x1和x2的步长分别为s1,s2。(这里其实就是传统快搜索里将全局搜索转为局部搜索),最后生成 [ W H D 2 ] [WHD^2] [WHD2] 的相关性矩阵。 D 2 D^2 D2意味着将patch间2D的相关性堆叠到一个维度。

1.2 代码实现

from spatial_correlation_sampler import SpatialCorrelationSampler
函数详细介绍可以看这里
更深一点想看c++的原始代码可以点这里 ,还是蛮标准的循环取点相乘再取平均。

2 PWCNet 里的cost Volume

2.1 介绍

PWCNet其实和SpyNet很像,都是金字塔,warp。但是PWCnet不同的地方有两个1)warp是对特征,2)就是我们这次介绍的主角cost volume。摘要对cost volume的介绍是:用warped 的特征和第一张图的特征计算构造一个cost volume,它被一个CNN处理用来估计光流。
相关工作中说 cost volume用于存储 像素与其相关联的下一帧的对应像素 的 数据匹配成本。在介绍网络结构时,作者使用特征计算匹配代价(matching cost),定义它为第一张图的特征和第二张图warp后的特征间的相关性(correlation)
请添加图片描述T为转置操作,N为列向量 c 1 l ( x 1 ) c_1^l(x_1) c1l(x1)的长度,上标l表示金字塔的第l层。作者认为对L层的金字塔,只需要计算很小的D个像素内的cost volume就好了,因为top层的一个像素的motion对应到最大尺度层就是 2 L − 1 2^{L-1} 2L1个像素了,因此可以把D设的很小。输出的结果是 [ D 2 H l W l ] [D^2H^lW^l] [D2HlWl],后两个表示l层feature map的宽高。
其实这里看计算和FlowNet的计算基本是相同的,都是对f1中的每个坐标(x,y)对应的特征向量与f2中坐标(x,y)周围范围d的特征向量计算匹配代价。区别在于FlowNet是逐通道计算两个patch间距离。PWCNet是逐WH计算特征向量间距离。这个向量间转置点乘的距离就是余弦相似度。如果FlowNet的步长=D,那理论上两者是相同的。
知乎有个对PWCnet中cost volume更仔细的介绍

2.2 代码实现

torch代码,代码来源

    def corr(self, refimg_fea, targetimg_fea):maxdisp=4b,c,h,w = refimg_fea.shape# 通过F.unfold取出f2的窗口范围d=2*maxdisp+1内的特征向量,# 这里由于F.unfold的步长默认为1,所以每个WH都能提取出周围d*d的特征向量,# 因此可以view到(b,c,2*maxdisp+1, 2*maxdisp+1,h,w)# ps:个人认为第二个 2*maxdisp+1**2 的 次方是 个错误,应也是2*maxdisp+1,但不影响targetimg_fea = F.unfold(targetimg_fea, (2*maxdisp+1,2*maxdisp+1), padding=maxdisp).view(b,c,2*maxdisp+1, 2*maxdisp+1**2,h,w)# 对f1扩维, ps: targetimg_fea后的view应该无效cost = refimg_fea.view(b,c,h,w)[:,:,np.newaxis, np.newaxis]*targetimg_fea.view(b,c,2*maxdisp+1, 2*maxdisp+1**2,h,w)cost = cost.sum(1)b, ph, pw, h, w = cost.size()cost = cost.view(b, ph * pw, h, w)/refimg_fea.size(1)return cost

下面这个代码虽然和上面一样,但我觉得更艺术,就贴下来了

def compute_cost_volume(feat1, feat2, param_dict):"""only implemented for:kernel_size = 1stride1 = 1stride2 = 1"""max_disp = param_dict["max_disp"]_, _, height, width = feat1.size()num_shifts = 2 * max_disp + 1feat2_padded = tf.pad(feat2, (max_disp, max_disp, max_disp, max_disp), "constant", 0)cost_list = []for i in range(num_shifts):for j in range(num_shifts):corr = torch.mean(feat1 * feat2_padded[:, :, i:(height + i), j:(width + j)], axis=1, keepdims=True)cost_list.append(corr)cost_volume = torch.cat(cost_list, axis=1)return cost_volume

3 LiteFlowNet中的correction

文章对这部分的介绍很少,只是说I1 I2间的点相关性通过高层特征向量间相关性计算得到。
请添加图片描述F1 F2 标傲世金字塔特征,d限制搜索范围,N表示特征向量长度。最后的代价矩阵c也会被集成到一个3D grid中。(其实和PWCNet的计算应该是相同的)

作者通过三个操作减少计算负担。1)每个特征level计算短距离匹配, 也就是限制d的大小,和PWC相同。2)通过f-warp拉进F1F2间特征空间距离。3)在高空间分辨率的level,只在采样点计算得到稀疏cost volume。然后对稀疏的cost volume进行空间方向的插值

4 MaskFlownet 中的cost volume

本文是对PWCnet的改进,核心就是一句话:做匹配代价容量计算时,应当排除那些在一帧中被遮挡的像素。
实现在于通过卷积预测mask后,将sigmoid(mask)与warp后的光流相乘。同时会加一个平衡项。该操作图示如下:
请添加图片描述
该操作对金字塔每层都实现一次,下面以第5层为例,代码实现如下:

warp5 = F.broadcast_mul(warp5, F.sigmoid(mask5)) + self.conv5f(tradeoff5)
warp5 = self.leakyRELU(warp5)
corr5 = self.corr(F, c15, warp5) 
corr5 = self.leakyRELU(corr5)

其中的相关性计算self.corr通过 F.Correlation 函数实现。但这个F是MXnet框架下的,详细介绍可以查看文档
文档中的相关性计算公式和FlowNet的完全相同。

5 RAFT 中 multi-scale 4D correlation volume

作者希望使用4D 金字塔 相关性 volume来计算视觉相似度(Visual Similarity)。其实现也更加简单,对图1的特征f1=[B C HW] 和 图2的特征f2=[B C H W] 直接点乘。也可以说就是将前面PWCnet的d设置为0,对应D=1,也就是只计算当前位置。 对应的f1中每个c与f2的HW个c相乘。
代码实现如下:

def corr(fmap1, fmap2):batch, dim, ht, wd = fmap1.shapefmap1 = fmap1.view(batch, dim, ht*wd)fmap2 = fmap2.view(batch, dim, ht*wd) # fimap转换维度后为(b,ht*wd,dim)*(b,dim,ht*wd)= (b,ht*wd, ht*wd)# 论文说的4D correlation volume 就是[h w h w]   corr = torch.matmul(fmap1.transpose(1,2), fmap2)corr = corr.view(batch, ht, wd, 1, ht, wd)return corr  / torch.sqrt(torch.tensor(dim).float())

6 总结

总的来说谈谈为什么计算光流的网络会有这个组件,我觉得一个是从传统方法延续过来的,可以采用coarse2fine的过程中逐渐指导下一层光流计算。另一个是说假如得到的d*d某个通道数值都很大,说明需要再往那个通道对应的运动向量移动。相当于嵌入了位置编码信息。但cost volume并非是计算光流所必需的,比如很早的SpyNet就没有使用该模块,毕竟计算cost volume的计算开销还是很大的。

以上如有错误请多多交流指正,创作不意,有用的话可以多多点赞收藏。

这篇关于光流估计中cost volume详解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/661540

相关文章

C++使用栈实现括号匹配的代码详解

《C++使用栈实现括号匹配的代码详解》在编程中,括号匹配是一个常见问题,尤其是在处理数学表达式、编译器解析等任务时,栈是一种非常适合处理此类问题的数据结构,能够精确地管理括号的匹配问题,本文将通过C+... 目录引言问题描述代码讲解代码解析栈的状态表示测试总结引言在编程中,括号匹配是一个常见问题,尤其是在

Debezium 与 Apache Kafka 的集成方式步骤详解

《Debezium与ApacheKafka的集成方式步骤详解》本文详细介绍了如何将Debezium与ApacheKafka集成,包括集成概述、步骤、注意事项等,通过KafkaConnect,D... 目录一、集成概述二、集成步骤1. 准备 Kafka 环境2. 配置 Kafka Connect3. 安装 D

Java中ArrayList和LinkedList有什么区别举例详解

《Java中ArrayList和LinkedList有什么区别举例详解》:本文主要介绍Java中ArrayList和LinkedList区别的相关资料,包括数据结构特性、核心操作性能、内存与GC影... 目录一、底层数据结构二、核心操作性能对比三、内存与 GC 影响四、扩容机制五、线程安全与并发方案六、工程

Spring Cloud LoadBalancer 负载均衡详解

《SpringCloudLoadBalancer负载均衡详解》本文介绍了如何在SpringCloud中使用SpringCloudLoadBalancer实现客户端负载均衡,并详细讲解了轮询策略和... 目录1. 在 idea 上运行多个服务2. 问题引入3. 负载均衡4. Spring Cloud Load

Springboot中分析SQL性能的两种方式详解

《Springboot中分析SQL性能的两种方式详解》文章介绍了SQL性能分析的两种方式:MyBatis-Plus性能分析插件和p6spy框架,MyBatis-Plus插件配置简单,适用于开发和测试环... 目录SQL性能分析的两种方式:功能介绍实现方式:实现步骤:SQL性能分析的两种方式:功能介绍记录

在 Spring Boot 中使用 @Autowired和 @Bean注解的示例详解

《在SpringBoot中使用@Autowired和@Bean注解的示例详解》本文通过一个示例演示了如何在SpringBoot中使用@Autowired和@Bean注解进行依赖注入和Bean... 目录在 Spring Boot 中使用 @Autowired 和 @Bean 注解示例背景1. 定义 Stud

如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别详解

《如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别详解》:本文主要介绍如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别的相关资料,描述了如何使用海康威视设备网络SD... 目录前言开发流程问题和解决方案dll库加载不到的问题老旧版本sdk不兼容的问题关键实现流程总结前言作为

SQL 中多表查询的常见连接方式详解

《SQL中多表查询的常见连接方式详解》本文介绍SQL中多表查询的常见连接方式,包括内连接(INNERJOIN)、左连接(LEFTJOIN)、右连接(RIGHTJOIN)、全外连接(FULLOUTER... 目录一、连接类型图表(ASCII 形式)二、前置代码(创建示例表)三、连接方式代码示例1. 内连接(I

Go路由注册方法详解

《Go路由注册方法详解》Go语言中,http.NewServeMux()和http.HandleFunc()是两种不同的路由注册方式,前者创建独立的ServeMux实例,适合模块化和分层路由,灵活性高... 目录Go路由注册方法1. 路由注册的方式2. 路由器的独立性3. 灵活性4. 启动服务器的方式5.

Java中八大包装类举例详解(通俗易懂)

《Java中八大包装类举例详解(通俗易懂)》:本文主要介绍Java中的包装类,包括它们的作用、特点、用途以及如何进行装箱和拆箱,包装类还提供了许多实用方法,如转换、获取基本类型值、比较和类型检测,... 目录一、包装类(Wrapper Class)1、简要介绍2、包装类特点3、包装类用途二、装箱和拆箱1、装