TextCNN的复现

2024-01-30 17:52
文章标签 复现 textcnn

本文主要是介绍TextCNN的复现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

TextCNN的复现–pytorch的实现

对于TextCNN的讲解,可以参考这篇文章

Convolutional Neural Networks for Sentence Classification - 知乎 (zhihu.com)

接下来主要是对代码内容的详解,完整代码将在文章末尾给出。

使用的数据集为电影评论数据集,其中正面数据集5000条左右,负面的数据集也为5000条。

pyroch的基本训练过程:

加载训练集–构建模型–模型训练–模型评价

首先,是要对数据集进行加载,在对数据集加载时候需要继承一下Dataset类,代码如下

class Data_loader(Dataset):def __init__(self, file_pos, file_neg, model_path, word2_vec=False):self.file_pos = file_posself.file_neg = file_negif word2_vec:self.x_train, self.y_train = self.get_word2vec(model_path)else:self.x_train, self.y_train, self.dictionary = self.pre_process()def __getitem__(self, idx):data = self.x_train[idx]label = self.y_train[idx]data = torch.tensor(data)label = torch.tensor(label)return data, labeldef __len__(self):return len(self.x_train)def clean_sentences(self, string):string = re.sub(r"[^A-Za-z0-9(),!?\'\`]", " ", string)string = re.sub(r"\'s", " \'s", string)string = re.sub(r"\'ve", " \'ve", string)string = re.sub(r"n\'t", " n\'t", string)string = re.sub(r"\'re", " \'re", string)string = re.sub(r"\'d", " \'d", string)string = re.sub(r"\'ll", " \'ll", string)string = re.sub(r",", " , ", string)string = re.sub(r"!", " ! ", string)string = re.sub(r"\(", " \( ", string)string = re.sub(r"\)", " \) ", string)string = re.sub(r"\?", " \? ", string)string = re.sub(r"\s{2,}", " ", string)return string.strip().lower()def load_data_and_labels(self):positive_examples = list(open(self.file_pos, "r", encoding="utf-8").readlines())positive_examples = [s.strip() for s in positive_examples]  # 对评论数据删除每一行数据的\t,\nnegative_examples = list(open(self.file_neg, "r", encoding="utf-8").readlines())negative_examples = [s.strip() for s in negative_examples]  # 对评论数据删除每一行数据的\t,\nx_text = positive_examples + negative_examplesx_text = [self.clean_sentences(_) for _ in x_text]positive_labels = [[1, 0] for _ in positive_examples]  # 正样本数据为1negative_labels = [[0, 1] for _ in negative_examples]  # 负样本数据为0y = np.concatenate([positive_labels, negative_labels], 0)return x_text, y  # 返回的是dataframe对象,[0]data[0]为文本数据,data[1]为标签def pre_process(self):'''加载数据,并对之前使用的数据进行打乱返回,同时根据训练集和测试集的比列进行划分,默认百分80和百分20:return:测试数据、训练数据、以及生成的词汇表'''x_data, y_label = self.load_data_and_labels()max_document_length = max(len(x.split(' ')) for x in x_data)voc = []word_split = [][voc.extend(x.split()) for x in x_data]  # 生成词典[word_split.append(x.split()) for x in x_data]if len(voc) != 0:ordere_dict = OrderedDict(sorted(Counter(_flatten(voc)).items(), key=lambda x: x[1], reverse=True))# 把文档映射成词汇的索引序列dictionary = vocab(ordere_dict)x_data = []for words in word_split:x = list(dictionary.lookup_indices(words))temp_pos = max_document_length - len(x)if temp_pos != 0:for i in range(1, temp_pos + 1):x.extend([0])x_data.append(x)x_data = np.array(x_data)np.random.seed(10)# 将标签打乱顺序,返回索引shuffle_indices = np.random.permutation(np.arange(len(y_label)))x_shuffled = x_data[shuffle_indices]y_shuffled = y_label[shuffle_indices]return x_shuffled, y_shuffled, dictionarydef get_word2vec(self, model_path):model = gensim.models.Word2Vec.load(model_path)x_data, y_label = self.load_data_and_labels()word_split = [][word_split.append(x.split()) for x in x_data]sentence_vectors = []for sentence in word_split:sentence_vector = []for word in sentence:try:v = model.wv.get_vector(word)except Exception as e:v = np.zeros(shape=(model.vector_size,), dtype=np.float32)sentence_vector.append(v)sentence_vectors.append(sentence_vector)max_document_length = max(len(x) for x in sentence_vectors)for vector in sentence_vectors:for i in range(1, max_document_length - len(vector) + 1):v = np.zeros(shape=(model.vector_size,), dtype=np.float32)vector.append(v)vector_data = np.asarray(sentence_vectors, dtype=np.float32)np.random.seed(10)# 将标签打乱顺序,返回索引shuffle_indices = np.random.permutation(np.arange(len(y_label)))x_shuffled = vector_data[shuffle_indices]y_shuffled = y_label[shuffle_indices]return x_shuffled, y_shuffled

上述代码中的__init__ 、getitem 、len是必须要继承实现的方法,clean_sentence是对读取的数据进行清洗,load_data_and_label是加载数据且返回清洗过后的数据以及数据标签。pre_process是对数据进行编码,原始的数据是英文数据,因此需要对其进行分词、编码,最后返回的数据将是数字,一行数据就是一句评论。

例如:

I like this movie

在对其进行编码返回后将是 0 1 2 3,0对应的为I,1对应的为like以此类推。

get_word2vec则是使用word2vec预训练模型来对每个单词对应的数据内容进行映射。1个单词对应的将会是一个100维的矩阵,该维度可以根据自己训练word2vec模型时候自己进行调整。

接下来是word2vec模型的训练及保存,出于简便性,训练word2vec模型时候直接使用了该数据集对word2vec模型进行训练。

代码如下所示:

def get_model(p_file, n_file):x_data, y_label = load_data_and_labels(p_file, n_file)x_data = [x.split() for x in x_data]max_document_length = max(len(x) for x in x_data)model = Word2Vec(x_data, vector_size=256)return model

在这儿设置的每个词的维度是256维。

接下来就是TextCNN模型的构建

class GlobalMaxPool1d(nn.Module):def __init__(self):super(GlobalMaxPool1d, self).__init__()def forward(self, x):return F.max_pool1d(x, kernel_size=x.shape[2])class TextCNN(nn.Module):def __init__(self, num_classes, num_embeddings=-1, embedding_dim=512, kernel_size=[3, 4, 5, 6],num_channels=[32, 32, 32, 32], embeddings_pretrained=None):super(TextCNN, self).__init__()self.num_classes = num_classesself.num_embeddings = num_embeddingsif self.num_embeddings > 0:self.embedding = nn.Embedding(num_embeddings, embedding_dim)if embeddings_pretrained is not None:self.embedding = self.embedding.from_pretrained(embeddings_pretrained, freeze=False)self.cnn_layers = nn.ModuleList()  # 创建多个一维卷积层for c, k in zip(num_channels, kernel_size):cnn = nn.Sequential(nn.Conv1d(in_channels=embedding_dim, out_channels=c, kernel_size=k),nn.BatchNorm1d(c),nn.ReLU(inplace=True))# cnn = nn.Sequential(nn.Conv2d(in_channels=1, out_channels=c, kernel_size=k),#                     nn.BatchNorm1d(c),#                     nn.ReLU(inplace=True)#                     )self.cnn_layers.append(cnn)self.pool = GlobalMaxPool1d()self.classify = nn.Sequential(nn.Dropout(p=0.2),nn.Linear(sum(num_channels), self.num_classes))def forward(self, x):if self.num_embeddings > 0:x = self.embedding(x)# input = torch.unsqueeze(x, dim=1)# print(input.size())input = x.permute(0, 2, 1)# print(input.size())# print(len(input[0]))y = []for layer in self.cnn_layers:x = layer(input)x = self.pool(x).squeeze(-1)y.append(x)# print(y)y = torch.cat(y, dim=1)out = self.classify(y)# out = torch.sigmoid(out)return out

在构建模型时候需要继承nn.moudule,同时要实现__init__、以及forward方法,可以看作init在定义各个层,forward在对各个层之间来进行连接。

接下来就是对模型进行训练,代码如下所示:

batch_size = 832
num_classes = 2
file_pos = 'E:\\PostGraduate\\Paper_review\\pytorch_TextCnn/data/rt-polarity.pos'
file_neg = 'E:\\PostGraduate\\Paper_review\\pytorch_TextCnn/data/rt-polarity.neg'
word2vec_path = 'E:\\PostGraduate\\Paper_review\\pytorch_TextCnn/word2vec1.model'
train_data = Data_loader(file_pos, file_neg, word2vec_path)
train_size = int(len(train_data) * 0.8)
test_size = len(train_data) - train_size
train_dataset, test_dataset = torch.utils.data.random_split(train_data, [train_size, test_size])
train_iter = DataLoader(train_dataset, batch_size=830, shuffle=True)
test_iter = DataLoader(test_dataset, batch_size=2133, shuffle=True)
model = TextCNN(num_classes, embeddings_pretrained=True)
# model = TextCNN(num_classes, num_embeddings=18764)
# 开始训练
epoch = 100  # 训练轮次
optmizer = torch.optim.Adam(model.parameters(), lr=0.01)
# optmizer = torch.optim.SGD(model.parameters(),lr=0.01,momentum=0.4)
train_losses = []
train_counter = []
test_losses = []
log_interval = 5
test_counter = [i * len(train_iter.dataset) for i in range(epoch + 1)]
device = 'cpu'def train_loop(n_epochs, optimizer, model, train_loader, device, test_iter):for epoch in range(1, n_epochs + 1):print("开始第{}轮训练".format(epoch))model.train()correct = 0for i, data in enumerate(train_loader):optimizer.zero_grad()(text_data, label) = datatext_data = text_data.to(device)label = label.to(device)label = label.long()output = model(text_data)loss_func = nn.BCEWithLogitsLoss()# output = output.long()loss = loss_func(output, label.float())loss.backward()optimizer.step()pred = output.data.max(1, keepdim=True)[1]label = label.data.max(1, keepdim=True)[1]correct += pred.eq(label.data.view_as(pred)).sum()if i % log_interval == 0:print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(epoch, i * len(text_data), len(train_loader.dataset),100. * i / len(train_loader), loss.item()))train_losses.append(loss.item())train_counter.append((i * 64) + ((epoch - 1) * len(train_loader.dataset)))torch.save(model.state_dict(), './model.pth')torch.save(optimizer.state_dict(), './optimizer.pth')print("Accuracy: {}/{} ({:.0f}%)\n".format(correct, len(train_loader.dataset),100. * correct / len(train_loader.dataset)))print("开始第{}轮评价".format(epoch))model.eval()test_loss = 0correct = 0with torch.no_grad():for data, target in test_iter:# for data, target in train_iter:data = data.to(device)target = target.to(device)output = model(data)loss_func = nn.BCEWithLogitsLoss()# output = output.long()loss = loss_func(output, target.float())test_loss += losspred = output.data.max(1, keepdim=True)[1]label = target.data.max(1, keepdim=True)[1]correct += pred.eq(label.data.view_as(pred)).sum()test_loss /= len(test_iter.dataset)# test_loss /= len(train_iter.dataset)test_losses.append(test_loss)print('\nTest set: Avg. loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(test_loss, correct, len(test_iter.dataset),100. * correct / len(test_iter.dataset)))train_loop(epoch, optmizer, model, train_iter, device, test_iter)

在上述中,首先会对数据集加载进来,然后分为80%的训练集和20%的测试集,定义使用的优化器为adam。同时在训练的过程中会对优化器、损失函数等信息进行保存。

训练结果如下所示:

完整代码链接

t, len(test_iter.dataset),
100. * correct / len(test_iter.dataset)))

train_loop(epoch, optmizer, model, train_iter, device, test_iter)


在上述中,首先会对数据集加载进来,然后分为80%的训练集和20%的测试集,定义使用的优化器为adam。同时在训练的过程中会对优化器、损失函数等信息进行保存。训练结果为75%左右。完整代码链接[木南/TextCNN (gitee.com)](https://gitee.com/nanwang-crea/text-cnn)

这篇关于TextCNN的复现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/661063

相关文章

Detectorn2预训练模型复现:数据准备、训练命令、日志分析与输出目录

Detectorn2预训练模型复现:数据准备、训练命令、日志分析与输出目录 在深度学习项目中,目标检测是一项重要的任务。本文将详细介绍如何使用Detectron2进行目标检测模型的复现训练,涵盖训练数据准备、训练命令、训练日志分析、训练指标以及训练输出目录的各个文件及其作用。特别地,我们将演示在训练过程中出现中断后,如何使用 resume 功能继续训练,并将我们复现的模型与Model Zoo中的

UMI复现代码运行逻辑全流程(一)——eval_real.py(尚在更新)

一、文件夹功能解析 全文件夹如下 其中,核心文件作用为: diffusion_policy:扩散策略核心文件夹,包含了众多模型及基础库 example:标定及配置文件 scripts/scripts_real:测试脚本文件,区别在于前者倾向于单体运行,后者为整体运行 scripts_slam_pipeline:orb_slam3运行全部文件 umi:核心交互文件夹,作用在于构建真

文章解读与仿真程序复现思路——电力自动化设备EI\CSCD\北大核心《考虑燃料电池和电解槽虚拟惯量支撑的电力系统优化调度方法》

本专栏栏目提供文章与程序复现思路,具体已有的论文与论文源程序可翻阅本博主免费的专栏栏目《论文与完整程序》 论文与完整源程序_电网论文源程序的博客-CSDN博客https://blog.csdn.net/liang674027206/category_12531414.html 电网论文源程序-CSDN博客电网论文源程序擅长文章解读,论文与完整源程序,等方面的知识,电网论文源程序关注python

【vulhub】thinkphp5 2-rce 5.0.23-rce 5-rce 漏洞复现

2-rec 1.启动环境  cd /.../vulhub/thinkphp/2-rce # cd进入2-rce靶场文件环境下docker-compose up -d # docker-compose启动靶场docker ps -a # 查看开启的靶场信息 2.访问192.168.146.136:8080网页 3.构造payload http

【漏洞复现】赛蓝企业管理系统 GetJSFile 任意文件读取漏洞

免责声明:         本文内容旨在提供有关特定漏洞或安全漏洞的信息,以帮助用户更好地了解可能存在的风险。公布此类信息的目的在于促进网络安全意识和技术进步,并非出于任何恶意目的。阅读者应该明白,在利用本文提到的漏洞信息或进行相关测试时,可能会违反某些法律法规或服务协议。同时,未经授权地访问系统、网络或应用程序可能导致法律责任或其他严重后果。作者不对读者基于本文内容而产生的任何行为或后果承担

深度学习每周学习总结N9:transformer复现

🍨 本文为🔗365天深度学习训练营 中的学习记录博客🍖 原作者:K同学啊 | 接辅导、项目定制 目录 多头注意力机制前馈传播位置编码编码层解码层Transformer模型构建使用示例 本文为TR3学习打卡,为了保证记录顺序我这里写为N9 总结: 之前有学习过文本预处理的环节,对文本处理的主要方式有以下三种: 1:词袋模型(one-hot编码) 2:TF-I

【python 走进NLP】从零开始搭建textCNN卷积神经网络模型

无意中发现了一个巨牛的人工智能教程,忍不住分享一下给大家。教程不仅是零基础,通俗易懂,而且非常风趣幽默,像看小说一样!觉得太牛了,所以分享给大家。点这里可以跳转到教程。人工智能教程 1、众所周知,tensorflow 是一个开源的机器学习框架,它的出现大大降低了机器学习的门槛,即使你没有太多的数学知识,它也可以允许你用“搭积木”的方式快速实现一个神经网络,即使没有调节太多的参数,模型的表现一般还

【达梦数据库】误删数据库目录问题复现解决方式

目录 1、环境搭建1.1、查询数据库版本1.2、创建表1.3、插入数据1.4、查询数据 2、故障重演2.1、服务器内直接删除整个库文件2.2、查询数据:数据可查2.3、查看进程:进程存在2.4、查看proc进程文件:deleted 3、数据恢复3.1、逻辑导出导入-(数据丢失,废弃)3.1.1、全库导出3.1.2、重新初始化库3.1.3、全库导入3.1.4、查询数据:数据丢失

【漏洞复现】锐捷 校园网自助服务系统 login_judge.jsf 任意文件读取漏洞

免责声明:         本文内容旨在提供有关特定漏洞或安全漏洞的信息,以帮助用户更好地了解可能存在的风险。公布此类信息的目的在于促进网络安全意识和技术进步,并非出于任何恶意目的。阅读者应该明白,在利用本文提到的漏洞信息或进行相关测试时,可能会违反某些法律法规或服务协议。同时,未经授权地访问系统、网络或应用程序可能导致法律责任或其他严重后果。作者不对读者基于本文内容而产生的任何行为或后果承担

外泌体相关基因肝癌临床模型预测——2-3分纯生信文章复现——5.拷贝数变异及突变图谱(2)

内容如下: 1.外泌体和肝癌TCGA数据下载 2.数据格式整理 3.差异表达基因筛选 4.预后相关外泌体基因确定 5.拷贝数变异及突变图谱 6.外泌体基因功能注释 7.LASSO回归筛选外泌体预后模型 8.预后模型验证 9.预后模型鲁棒性分析 10.独立预后因素分析及与临床的相关性分析 11.列线图,ROC曲线,校准曲线,DCA曲线 12.外部数据集验证 13.外泌