g2o--icp代码解析

2024-01-30 07:28
文章标签 代码 解析 icp g2o

本文主要是介绍g2o--icp代码解析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

概要

个人理解Icp是一种location算法。我们先将全局的事物特征化,提取出特征点。在求解过程中,将观察的的图像,同样进行特征化。将全局点与当前特征点进行匹配,就可以求得观察者当前的位姿。

Icp算法通常分为粗匹配和精细匹配两部分。粗匹配是将观察特征点移动到对应全局特征点的附近,而精细匹配这是将一个一个对应的特征点,使用最小二乘优化进行调整。在精细匹配的过程中,特征点对的选取也很重要,icp是一套迭代的算法,每次变换后都需要重新选取特征点对。

在求解一次特征点对匹配过程中,也存在很多中算法。笔者接触过的牛顿法思路比较简单,效果也很好。网上还推荐一种常用的方法svd,也是基于矩阵进行运算。今天介绍的g2o也是一种icp的匹配算法。

所谓的图优化,就是把一个常规的优化问题,以图(Graph)的形式来表述。在图中,以顶点表示优化变量,以边表示观测方程。于是总体优化问题变为n条边加和的形式(边是约束)。

所谓的问题

观测者所在两个位姿,能够看到特征点在自我坐标下的三维位置,并且在两个位姿下的特征点对是明确的,求解两个位姿的相对关系。

建图

源码解析

本文分析的也是g2o自带example中的代码(gicp_demo.cpp)

初始化求解器

  SparseOptimizer optimizer;optimizer.setVerbose(false);// variable-size block solverg2o::OptimizationAlgorithmLevenberg* solver =new g2o::OptimizationAlgorithmLevenberg(std::make_unique<BlockSolverX>(std::make_unique<LinearSolverDense<g2o::BlockSolverX::PoseMatrixType>>()));optimizer.setAlgorithm(solver);

初始化1000个特征点

  vector<Vector3d> true_points;for (size_t i = 0; i < 1000; ++i) {true_points.push_back(Vector3d((g2o::Sampler::uniformRand(0., 1.) - 0.5) * 3,g2o::Sampler::uniformRand(0., 1.) - 0.5,g2o::Sampler::uniformRand(0., 1.) + 10));}

初始化观测者的两个位姿

  // set up two posesint vertex_id = 0;for (size_t i = 0; i < 2; ++i) {// set up rotation and translation for this nodeVector3d t(0, 0, i);Quaterniond q;q.setIdentity();Eigen::Isometry3d cam;  // camera posecam = q;cam.translation() = t;// set up nodeVertexSE3* vc = new VertexSE3();vc->setEstimate(cam); // 设定初始位姿vc->setId(vertex_id);  // vertex idcerr << t.transpose() << " | " << q.coeffs().transpose() << endl;// set first cam pose fixedif (i == 0) vc->setFixed(true); // 将第一个点固定// add to optimizeroptimizer.addVertex(vc); // 将观测者的位姿添加进优化器中vertex_id++;} 

添加约束

  // set up point matchesfor (size_t i = 0; i < true_points.size(); ++i) { // 遍历所有特征点// get two posesVertexSE3* vp0 =dynamic_cast<VertexSE3*>(optimizer.vertices().find(0)->second); // 取出观测者第一个位姿VertexSE3* vp1 =dynamic_cast<VertexSE3*>(optimizer.vertices().find(1)->second); // 取出观测者第二个位姿// calculate the relative 3D position of the pointVector3d pt0, pt1;pt0 = vp0->estimate().inverse() * true_points[i]; // 计算特征点在第一个位姿坐标系下的位置pt1 = vp1->estimate().inverse() * true_points[i]; // 计算特征点在第二个位姿坐标系下的位置// add in noisept0 += Vector3d(g2o::Sampler::gaussRand(0., euc_noise), // 添加误差g2o::Sampler::gaussRand(0., euc_noise),g2o::Sampler::gaussRand(0., euc_noise));pt1 += Vector3d(g2o::Sampler::gaussRand(0., euc_noise),g2o::Sampler::gaussRand(0., euc_noise),g2o::Sampler::gaussRand(0., euc_noise));// form edge, with normals in varioius positionsVector3d nm0, nm1;nm0 << 0, i, 1;nm1 << 0, i, 1;nm0.normalize();nm1.normalize();Edge_V_V_GICP* e  // new edge with correct cohort for caching= new Edge_V_V_GICP();e->setVertex(0, vp0);  // first viewpoint 设定边的第一个顶点                                                 e->setVertex(1, vp1);  // second viewpoint 设定边的第二个顶点   EdgeGICP meas;meas.pos0 = pt0; // 设定边中第一个观测点的观测值meas.pos1 = pt1; // 设定边中第二个观测点的观测值meas.normal0 = nm0;meas.normal1 = nm1;e->setMeasurement(meas); // 设定观测值//        e->inverseMeasurement().pos() = -kp;meas = e->measurement();// use this for point-planee->information() = meas.prec0(0.01); // 设定权重optimizer.addEdge(e); // 将该边添加进求解器中}

求解结果

  cout << endl << "Second vertex should be near 0,0,1" << endl;cout << dynamic_cast<VertexSE3*>(optimizer.vertices().find(0)->second)->estimate().translation().transpose()<< endl;cout << dynamic_cast<VertexSE3*>(optimizer.vertices().find(1)->second) // 第二个点的位姿是我们最关心的->estimate().translation().transpose()<< endl;

注:

关于边中的normal0和normal1参数的解释 -- https://github.com/RainerKuemmerle/g2o/issues/266

这篇关于g2o--icp代码解析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/659502

相关文章

SpringCloud集成AlloyDB的示例代码

《SpringCloud集成AlloyDB的示例代码》AlloyDB是GoogleCloud提供的一种高度可扩展、强性能的关系型数据库服务,它兼容PostgreSQL,并提供了更快的查询性能... 目录1.AlloyDBjavascript是什么?AlloyDB 的工作原理2.搭建测试环境3.代码工程1.

Java调用Python代码的几种方法小结

《Java调用Python代码的几种方法小结》Python语言有丰富的系统管理、数据处理、统计类软件包,因此从java应用中调用Python代码的需求很常见、实用,本文介绍几种方法从java调用Pyt... 目录引言Java core使用ProcessBuilder使用Java脚本引擎总结引言python

Java中ArrayList的8种浅拷贝方式示例代码

《Java中ArrayList的8种浅拷贝方式示例代码》:本文主要介绍Java中ArrayList的8种浅拷贝方式的相关资料,讲解了Java中ArrayList的浅拷贝概念,并详细分享了八种实现浅... 目录引言什么是浅拷贝?ArrayList 浅拷贝的重要性方法一:使用构造函数方法二:使用 addAll(

JAVA利用顺序表实现“杨辉三角”的思路及代码示例

《JAVA利用顺序表实现“杨辉三角”的思路及代码示例》杨辉三角形是中国古代数学的杰出研究成果之一,是我国北宋数学家贾宪于1050年首先发现并使用的,:本文主要介绍JAVA利用顺序表实现杨辉三角的思... 目录一:“杨辉三角”题目链接二:题解代码:三:题解思路:总结一:“杨辉三角”题目链接题目链接:点击这里

SpringBoot使用注解集成Redis缓存的示例代码

《SpringBoot使用注解集成Redis缓存的示例代码》:本文主要介绍在SpringBoot中使用注解集成Redis缓存的步骤,包括添加依赖、创建相关配置类、需要缓存数据的类(Tes... 目录一、创建 Caching 配置类二、创建需要缓存数据的类三、测试方法Spring Boot 熟悉后,集成一个外

在C#中合并和解析相对路径方式

《在C#中合并和解析相对路径方式》Path类提供了几个用于操作文件路径的静态方法,其中包括Combine方法和GetFullPath方法,Combine方法将两个路径合并在一起,但不会解析包含相对元素... 目录C#合并和解析相对路径System.IO.Path类幸运的是总结C#合并和解析相对路径对于 C

轻松掌握python的dataclass让你的代码更简洁优雅

《轻松掌握python的dataclass让你的代码更简洁优雅》本文总结了几个我在使用Python的dataclass时常用的技巧,dataclass装饰器可以帮助我们简化数据类的定义过程,包括设置默... 目录1. 传统的类定义方式2. dataclass装饰器定义类2.1. 默认值2.2. 隐藏敏感信息

opencv实现像素统计的示例代码

《opencv实现像素统计的示例代码》本文介绍了OpenCV中统计图像像素信息的常用方法和函数,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 统计像素值的基本信息2. 统计像素值的直方图3. 统计像素值的总和4. 统计非零像素的数量

IDEA常用插件之代码扫描SonarLint详解

《IDEA常用插件之代码扫描SonarLint详解》SonarLint是一款用于代码扫描的插件,可以帮助查找隐藏的bug,下载并安装插件后,右键点击项目并选择“Analyze”、“Analyzewit... 目录SonajavascriptrLint 查找隐藏的bug下载安装插件扫描代码查看结果总结Sona

Java解析JSON的六种方案

《Java解析JSON的六种方案》这篇文章介绍了6种JSON解析方案,包括Jackson、Gson、FastJSON、JsonPath、、手动解析,分别阐述了它们的功能特点、代码示例、高级功能、优缺点... 目录前言1. 使用 Jackson:业界标配功能特点代码示例高级功能优缺点2. 使用 Gson:轻量