语言模型大战:GPT、Bard与文心一言,谁才是王者?

2024-01-29 23:12

本文主要是介绍语言模型大战:GPT、Bard与文心一言,谁才是王者?,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

如何对GPT-3.5、GPT-4、Bard、文心一言、通义千问的水平进行排序?

在聊技术原理之前我们来先看看几个产品的团队背景

一、团队背景

1.1、ChatGPT

ChatGPT团队的成员大多具有计算机科学、人工智能、自然语言处理、机器学习等相关领域的高等教育背景,有些还拥有博士学位。他们来自世界各地,有美国、加拿大、英国、法国、德国、中国、印度等国家的人才。

团队成员绝大多数拥有名校学历,且具有全球知名企业工作经历。包括谷歌、FaceBook、微软、斯坦福大学、加州大学伯克利分校、麻省理工学院、剑桥大学、哈佛大学和佐治亚理工学院、清华大学等。

1.2、Google Bard

Bard是应对OpenAI开发的ChatGPT的崛起而开发的,它的团队背景也是非常强大。团队成员来自世界各地,拥有不同的教育背景、工作经验和技术能力。团队成员的平均工作经验为 15 年,其中许多成员在大型科技公司工作,如 Google、Facebook等。团队成员毕业院校也都是顶尖院校如斯坦福大学、麻省理工学院、清华大学、北京大学、牛津大学、剑桥大学等。

在排名中也可以看到大多数是Google公司的成员。虽然当时Bard为了追赶ChatGPT,推出的太过仓促而翻车。当时2023年2月8日Google巴黎举行直播展示Bard后,Google的股价下跌了8%,相当于市值损失1000亿美元,虽然出现了小插曲,但在AI界Google的地位还是不低的。谷歌在人工智能领域拥有强大的技术实力,拥有大量的人工智能人才。开发了许多具有突破性的人工智能技术,如 TensorFlow、TPU、Gemini 等。这些技术在人工智能领域的各个领域得到了广泛应用。

1.3、文心一言

"文心一言"是由百度公司的自然语言处理团队开发的。这个团队的核心成员来自于清华大学、卡内基梅隆大学、谷歌等国内外顶尖高校及公司。

我没有在网上查到百度官方公开的文心一言团队的情况,但从以下这个方面也可以了解到一个大概情况。

百度开设了百度奖学金,百度奖学金于2013年设立至今,作为目前国内AI领域资助金额与含金量最高的学术奖学金之一,在业界取得了可观的影响力,该项目的获得者也在人工智能的各个领域已崭露头角。

历年有包括清华大学、浙江大学任意、哈尔滨工业大学、上海交通大学、北京理工大学魏、麻省理工学院、斯坦福大学、卡内基梅隆大学、悉尼科技大学等等在内的院校均有学生获奖。他们多年深耕专业领域,覆盖人工智能机器翻译、自然语言处理、任务型对话系统、图神经网络等多个AI专业领域。

  1. 技术原理

2.1、语言模型

  • GPT(Generative pre-trained transformer)

GPT 模型的全称是“Generative pre-trained transformer”,就是“基于 Transformer 的生成式预训练模型”。它是一种使用深度学习技术的自然语言处理(NLP)模型。GPT系列由OpenAI(开放人工智能)开发,它使用了Transformer架构,该架构在处理序列数据(如文本)时表现出色。

  • LaMDA(Language Model for Dialogue Applications)

Bard 使用的语言模型是基于谷歌自己的 LaMDA(对话应用程序语言模型)。

LaMDA 的全称是“Language Model for Dialogue Applications”,就是“对话应用程序语言模型”。LaMDA 是一种大型语言模型,由 Google AI 创建。它是在一个庞大的数据集上训练的,包括文本和代码,能够生成文本,翻译语言,编写不同类型的创意内容,并以信息丰富的方式回答您的问题。 语言模型使用的是Transformer架构。

  • 文心一言(ERNIE Bot)

文心一言,英文名是ERNIE Bot,它是百度打造的一款人工智能大语言模型,它具备跨模态、跨语言的深度语义理解与生成能力。文心一言有五大能力,分别是文学创作、商业文案创作、数理逻辑推算、中文理解、多模态生成。 语言模型使用的是Transformer架构。

2.2、技术原理

可以看到几个产品都有Transformer的影子,也就是GPT中的T,以下就简单介绍一下技术原理。

ChatGPT大概的技术原理流程:

  1. 数据准备:首先需要准备大量的文本和代码数据,这些数据将用于训练ChatGPT模型。
  2. 模型训练:ChatGPT模型使用Transformer架构进行训练。Transformer架构的核心是自注意力机制,它使模型能够识别和重视输入数据中不同部分的相对重要性。
  3. 模型推理:在接收到用户输入后,ChatGPT模型会使用Transformer架构来生成响应。

可以看到Transformer是所有模型的核心,哪么什么是Transformer架构呢?

Transformer是Google AI在2017年提出的一种自然语言处理模型架构。Transformer架构的核心是自注意力机制,它使模型能够识别和重视输入数据中不同部分的相对重要性。这种机制的引入,不仅提高了模型处理长文本的能力,也让其在理解语境和语义关系方面更为高效和准确。

Transformer架构的原理论文是"Attention Is All You Need",这篇论文由Vaswani等人在2017年发表。

Transformer 遵循以下的架构:

Transforme架构主要包括:

  • 编码器(Encoder):负责理解输入文本,为每个输入构造对应的语义表示(语义特征)。
  • 解码器(Decoder):负责生成输出,使用编码器输出的语义表示结合其他输入来生成目标序列。
  • 自注意力机制(Attention Mechanism):用于计算输入数据中不同部分之间的关系。

三、使用情况

3.1、文字类

我用一个知乎中知友问的一个问题:“汉字中带氵偏旁但与水无关的字”

1)ChatGPT3.5

“瀑”我感觉还是与水有关,其它几个字到是都对的。

2)ChatGPT4

感觉GPT4还是比较正确的没有出现特别错的字。当然也有知友开玩笑说“法”是与水有关的,并且这里的水最深,呵呵。。。。

3)Google Bard

这里还是出现了不少有问题的汉字,当然Bard汉语知识库说是使用的百度文心并不是它自己的。当时也爆出不少新闻也有不少截图。不过最近问Bard说使用的是Google自己的。

4)文心一言

文心在汉字上应该会有优势,不过还是出现了“瀑”字,不过文心列出的汉字还是比其它产品较多的,还都是对的。相比其它产品它的汉字处理能力应该是较强的,不过回答的就比较草率了点,在这方面的能力还是相对差了点。

当然我问的问题都是没有增加一些修饰的,如果增加相应的修饰会回答的更加准确。

从这个问题的回答来看:

ChatGPT4 > ChatGPT3.5 > 文心一言3.5 > Google Bard

3.2、绘图类

1)ChatGPT4

2)文心一言

3)Copilot(Bing)

四、总结排名

从语言模型参数量来看文心一言是最大的,之前出IDC报告中也说文心一言超GPT3.5,当然数据只是个参考还得看使用情况。另外gpt4、PaLM、ERNIE Bot4的参数量网上有很多版本大概都在万亿级的样子。

以下是全球对ChatGTP、Google Bard、文心一言、New Bing(Copilot)的关注情况,ChatGTP是遥遥领先的。

最后总结一下:

  • 如果主要关注文字处理的话
    chatgpt4>chatgpt3.5>Google Bard>文心一言
  • 如果主要关注实时信息、互联网数据、绘图等

copilot>chatgpt4>chatgpt3.5>Google Bard>文心一言

这篇关于语言模型大战:GPT、Bard与文心一言,谁才是王者?的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/658473

相关文章

C语言中的浮点数存储详解

《C语言中的浮点数存储详解》:本文主要介绍C语言中的浮点数存储详解,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、首先明确一个概念2、接下来,讲解C语言中浮点型数存储的规则2.1、可以将上述公式分为两部分来看2.2、问:十进制小数0.5该如何存储?2.3 浮点

基于Python实现多语言朗读与单词选择测验

《基于Python实现多语言朗读与单词选择测验》在数字化教育日益普及的今天,开发一款能够支持多语言朗读和单词选择测验的程序,对于语言学习者来说无疑是一个巨大的福音,下面我们就来用Python实现一个这... 目录一、项目概述二、环境准备三、实现朗读功能四、实现单词选择测验五、创建图形用户界面六、运行程序七、

C#集成DeepSeek模型实现AI私有化的流程步骤(本地部署与API调用教程)

《C#集成DeepSeek模型实现AI私有化的流程步骤(本地部署与API调用教程)》本文主要介绍了C#集成DeepSeek模型实现AI私有化的方法,包括搭建基础环境,如安装Ollama和下载DeepS... 目录前言搭建基础环境1、安装 Ollama2、下载 DeepSeek R1 模型客户端 ChatBo

SpringBoot快速接入OpenAI大模型的方法(JDK8)

《SpringBoot快速接入OpenAI大模型的方法(JDK8)》本文介绍了如何使用AI4J快速接入OpenAI大模型,并展示了如何实现流式与非流式的输出,以及对函数调用的使用,AI4J支持JDK8... 目录使用AI4J快速接入OpenAI大模型介绍AI4J-github快速使用创建SpringBoot

使用Go语言开发一个命令行文件管理工具

《使用Go语言开发一个命令行文件管理工具》这篇文章主要为大家详细介绍了如何使用Go语言开发一款命令行文件管理工具,支持批量重命名,删除,创建,移动文件,需要的小伙伴可以了解下... 目录一、工具功能一览二、核心代码解析1. 主程序结构2. 批量重命名3. 批量删除4. 创建文件/目录5. 批量移动三、如何安

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型的操作流程

《0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeekR1模型的操作流程》DeepSeekR1模型凭借其强大的自然语言处理能力,在未来具有广阔的应用前景,有望在多个领域发... 目录0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型,3步搞定一个应

Deepseek R1模型本地化部署+API接口调用详细教程(释放AI生产力)

《DeepseekR1模型本地化部署+API接口调用详细教程(释放AI生产力)》本文介绍了本地部署DeepSeekR1模型和通过API调用将其集成到VSCode中的过程,作者详细步骤展示了如何下载和... 目录前言一、deepseek R1模型与chatGPT o1系列模型对比二、本地部署步骤1.安装oll

Spring AI Alibaba接入大模型时的依赖问题小结

《SpringAIAlibaba接入大模型时的依赖问题小结》文章介绍了如何在pom.xml文件中配置SpringAIAlibaba依赖,并提供了一个示例pom.xml文件,同时,建议将Maven仓... 目录(一)pom.XML文件:(二)application.yml配置文件(一)pom.xml文件:首

Go语言中三种容器类型的数据结构详解

《Go语言中三种容器类型的数据结构详解》在Go语言中,有三种主要的容器类型用于存储和操作集合数据:本文主要介绍三者的使用与区别,感兴趣的小伙伴可以跟随小编一起学习一下... 目录基本概念1. 数组(Array)2. 切片(Slice)3. 映射(Map)对比总结注意事项基本概念在 Go 语言中,有三种主要