【论文阅读】Long-Tailed Recognition via Weight Balancing(CVPR2022)

2024-01-29 22:36

本文主要是介绍【论文阅读】Long-Tailed Recognition via Weight Balancing(CVPR2022),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

论文

问题:真实世界中普遍存在长尾识别问题,朴素训练产生的模型在更高准确率方面偏向于普通类,导致稀有的类别准确率偏低。
key:解决LTR的关键是平衡各方面,包括数据分布、训练损失和学习中的梯度。
文章主要讨论了三种方法: L2normalization, weight decay, and MaxNorm
一些有用的看法

  1. 研究表明,与联合训练特征学习和分类器学习的模型相比,解耦特征学习和分类器学习导致了显著的改进。
  2. 根据基准测试结果,通过集成专家模型或采用主动数据增强技术的自监督预训练来实现最好精度。
  3. 研究发现,SGD动量导致LTR出现问题,阻碍了进一步改善。
  4. 最近,Kang等人令人信服地证明了阶段性训练对LTR很重要。
  5. 权重衰减有助于学习隐藏层的平衡权重。
  6. 重要的是,我们的探索发现,虽然在分类器上使用L2规范化约束进行训练比简单训练有所改进,但它的表现不如下面描述的其他两个正则化。
  7. 与严格将所有滤波器权重的范数值设置为1的L2归一化不同,MaxNorm放松了这一约束,允许权重在训练期间在范数球内移动。
  8. 权重衰减中,不同数据集的最优λ各不相同——较大的数据集需要较小的权重衰减,直观地说,因为在更多数据上学习有助于泛化,因此需要较少的正则化。
    单阶段使用不平衡损失训练效果不好的原因:虽然他们没有解释为什么具有类平衡损失的单阶段训练表现不佳,但直观地说,这是因为类平衡损失人为地放大了从罕见的类训练数据计算的梯度,这损害了特征表示学习,从而损害了最终的LTR性能。
    本文作者使用了weight decay和max norm两种方法结合,因为发现两个结合效果更好。让模型不同类之间权重相差不会很大的同时,还能让这些权重缓慢增加。
    下面这幅图就是解释了这些方法的特点。
    在这里插入图片描述
    第一个就是普通方法训练的,它常见的类别权重增长快。
    第二个是L2 normalization,它把所有类别的权重都限定在一个常数。
    第三个是权重衰减,它的所有类的权重小,而且权重在增长。
    第四个是MaxNorm,它限制最大的权重。
    第五个是权重衰减和MaxNorm,会导致范数中的权重较小且平衡。

使用方法

weight decay

先定义好权重衰减的值。

weight_decay = 0.1 #weight decay value

然后在优化器中调用。Adam还有其他的都有weight_decay。

optimizer = optim.SGD([{'params': active_layers, 'lr': base_lr}], lr=base_lr, momentum=0.9, weight_decay=weight_decay)

MaxNorm

就是这个论文中的regularizers.py中的代码。只要会使用就好。

#使用前先定义好初始化好
pgdFunc = MaxNorm_via_PGD(thresh=thresh)
pgdFunc.setPerLayerThresh(model) # set per-layer thresholds这个是计算模型每一层的权重的阈值,这篇论文中只计算最后线性层的权重,并对最后线性层的权重进行限制

当模型训练一个epoch结束后,对已经更新完毕的模型权重进行限制,如果超过阈值就进行更新,让权重在最大范数的约束下。

 if pgdFunc:# Projected Gradient DescentpgdFunc.PGD(model)#对权重进行限制
import torch
import torch.nn as nn
import math
# The classes below wrap core functions to impose weight regurlarization constraints in training or finetuning a network.class MaxNorm_via_PGD():def __init__(self, thresh=1.0, LpNorm=1, tau=1):self.thresh = threshself.LpNorm = LpNormself.tau = tauself.perLayerThresh = []def setPerLayerThresh(self, model):#根据指定的模型设置每层的阈值#set pre-layer thresholdsself.perLayerThresh = []for curLayer in [model.encoder.fc.weight, model.encoder.fc.bias]:#遍历模型的最后两层curparam = curLayer.data#获取当前层的数据if len(curparam.shape) <= 1:#如果层只有一个维度,是一个偏置或者是一个1D的向量,则设置这一层的阈值为无穷大,继续下一层self.perLayerThresh.append(float('inf'))continuecurparam_vec = curparam.reshape((curparam.shape[0], -1))#如果不是,把权重张量展开neuronNorm_curparam = torch.linalg.norm(curparam_vec, ord=self.LpNorm, dim=1).detach().unsqueeze(-1)#沿着第一维计算P番薯,结果存储curLayerThresh = neuronNorm_curparam.min() + self.thresh*(neuronNorm_curparam.max() - neuronNorm_curparam.min())#计算每一层的阈值及神经元范数的最小值加上最大值和最小值之间的缩放差self.perLayerThresh.append(curLayerThresh)#每层阈值存储def PGD(self, model):#定义PGD函数,用于在模型的参数上执行投影梯度下降,试试最大范数约束if len(self.perLayerThresh) == 0:#如果每层的阈值是空,用setPerLayerThresh方法初始化self.setPerLayerThresh(model)for i, curLayer in enumerate([model.encoder.fc.weight, model.encoder.fc.bias]):#遍历模型的最后两层curparam = curLayer.data#获取当前层的数据张量值curparam_vec = curparam.reshape((curparam.shape[0], -1))#变成一维neuronNorm_curparam = (torch.linalg.norm(curparam_vec, ord=self.LpNorm, dim=1)**self.tau).detach().unsqueeze(-1)#在最后加一维#计算权重张量中每行神经元番薯的tau次方scalingVect = torch.ones_like(curparam)#创建一个形状与当前层数据相同的张量,用1初始化curLayerThresh = self.perLayerThresh[i]#获取阈值idx = neuronNorm_curparam > curLayerThresh#创建bool保存超过阈值的神经元idx = idx.squeeze()#tmp = curLayerThresh / (neuronNorm_curparam[idx].squeeze())**(self.tau)#根据每层的阈值和超过阈值的神经元番薯计算缩放因子for _ in range(len(scalingVect.shape)-1):#扩展缩放因子以匹配当前层数据的维度tmp = tmp.unsqueeze(-1)scalingVect[idx] = torch.mul(scalingVect[idx],tmp)curparam[idx] = scalingVect[idx] * curparam[idx]curparam[idx] = scalingVect[idx] * curparam[idx]#通过缩放值更新当前层的数据,以便对超过阈值的神经元进行缩放。完成权重更新

这篇关于【论文阅读】Long-Tailed Recognition via Weight Balancing(CVPR2022)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/658379

相关文章

JAVA智听未来一站式有声阅读平台听书系统小程序源码

智听未来,一站式有声阅读平台听书系统 🌟&nbsp;开篇:遇见未来,从“智听”开始 在这个快节奏的时代,你是否渴望在忙碌的间隙,找到一片属于自己的宁静角落?是否梦想着能随时随地,沉浸在知识的海洋,或是故事的奇幻世界里?今天,就让我带你一起探索“智听未来”——这一站式有声阅读平台听书系统,它正悄悄改变着我们的阅读方式,让未来触手可及! 📚&nbsp;第一站:海量资源,应有尽有 走进“智听

AI hospital 论文Idea

一、Benchmarking Large Language Models on Communicative Medical Coaching: A Dataset and a Novel System论文地址含代码 大多数现有模型和工具主要迎合以患者为中心的服务。这项工作深入探讨了LLMs在提高医疗专业人员的沟通能力。目标是构建一个模拟实践环境,人类医生(即医学学习者)可以在其中与患者代理进行医学

论文翻译:arxiv-2024 Benchmark Data Contamination of Large Language Models: A Survey

Benchmark Data Contamination of Large Language Models: A Survey https://arxiv.org/abs/2406.04244 大规模语言模型的基准数据污染:一项综述 文章目录 大规模语言模型的基准数据污染:一项综述摘要1 引言 摘要 大规模语言模型(LLMs),如GPT-4、Claude-3和Gemini的快

论文阅读笔记: Segment Anything

文章目录 Segment Anything摘要引言任务模型数据引擎数据集负责任的人工智能 Segment Anything Model图像编码器提示编码器mask解码器解决歧义损失和训练 Segment Anything 论文地址: https://arxiv.org/abs/2304.02643 代码地址:https://github.com/facebookresear

论文翻译:ICLR-2024 PROVING TEST SET CONTAMINATION IN BLACK BOX LANGUAGE MODELS

PROVING TEST SET CONTAMINATION IN BLACK BOX LANGUAGE MODELS https://openreview.net/forum?id=KS8mIvetg2 验证测试集污染在黑盒语言模型中 文章目录 验证测试集污染在黑盒语言模型中摘要1 引言 摘要 大型语言模型是在大量互联网数据上训练的,这引发了人们的担忧和猜测,即它们可能已

OmniGlue论文详解(特征匹配)

OmniGlue论文详解(特征匹配) 摘要1. 引言2. 相关工作2.1. 广义局部特征匹配2.2. 稀疏可学习匹配2.3. 半稠密可学习匹配2.4. 与其他图像表示匹配 3. OmniGlue3.1. 模型概述3.2. OmniGlue 细节3.2.1. 特征提取3.2.2. 利用DINOv2构建图形。3.2.3. 信息传播与新的指导3.2.4. 匹配层和损失函数3.2.5. 与Super

软件架构模式:5 分钟阅读

原文: https://orkhanscience.medium.com/software-architecture-patterns-5-mins-read-e9e3c8eb47d2 软件架构模式:5 分钟阅读 当有人潜入软件工程世界时,有一天他需要学习软件架构模式的基础知识。当我刚接触编码时,我不知道从哪里获得简要介绍现有架构模式的资源,这样它就不会太详细和混乱,而是非常抽象和易

BERT 论文逐段精读【论文精读】

BERT: 近 3 年 NLP 最火 CV: 大数据集上的训练好的 NN 模型,提升 CV 任务的性能 —— ImageNet 的 CNN 模型 NLP: BERT 简化了 NLP 任务的训练,提升了 NLP 任务的性能 BERT 如何站在巨人的肩膀上的?使用了哪些 NLP 已有的技术和思想?哪些是 BERT 的创新? 1标题 + 作者 BERT: Pre-trainin

[论文笔记]LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale

引言 今天带来第一篇量化论文LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale笔记。 为了简单,下文中以翻译的口吻记录,比如替换"作者"为"我们"。 大语言模型已被广泛采用,但推理时需要大量的GPU内存。我们开发了一种Int8矩阵乘法的过程,用于Transformer中的前馈和注意力投影层,这可以将推理所需

【阅读文献】一个使用大语言模型的端到端语音概要

摘要 ssum框架(Speech Summarization)为了 从说话人的语音提出对应的文本二题出。 ssum面临的挑战: 控制长语音的输入捕捉 the intricate cross-mdoel mapping 在长语音输入和短文本之间。 ssum端到端模型框架 使用 Q-Former 作为 语音和文本的中介连接 ,并且使用LLMs去从语音特征正确地产生文本。 采取 multi-st