【代码能力提升 | 代码阅读学习】分析 VoxelNet 的 主干

2024-01-29 18:20

本文主要是介绍【代码能力提升 | 代码阅读学习】分析 VoxelNet 的 主干,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 前言
  • 代码分析
    • VoxelNet model
    • 2.数据处理
      • 2.1单个样本处理
      • 2.2处理成batch
  • 最后,附上我一步步调试代码,到3D-conv

前言

代码来自:https://github.com/skyhehe123/VoxelNet-pytorch
其中 测试数据来自:https://github.com/gakkiri/simple-pointpillar

代码分析

VoxelNet model

  1. model forward()就是模型的输入,voxel_features, voxel_coords是一个 batch 的数据。

    • voxel_features: [P, T, C], voxel_coords: [P, 4]。如何知道是 batch中的第几个样本? voxel_coords中的[P, 0]维度告诉了,其中的数据巧妙处理在 文件 kitti.pytrain.py, 稍后我们介绍
    • 转换为grid tensor: voxel_indexing(), 其中sparse_features.t()应该有.t(), 不然维度不匹配报错,原代码错了。经过这一步,输出维度为[B, C, D, H, W]。【这个函数妙啊,一个索引匹配就完成了 点云=> 规则张量,美中不足的是原代码写错了,需要加个转置.t()
      • 一个小样例测试这段代码 正确与否
    import torchsparse_features = torch.tensor([[1.0, 1, 1], [2, 2, 2]])
    coords = torch.IntTensor([[0,0,0,1], [1,0,0,2]]) # [P, 4(id,x,y,z)]dense_feature = torch.zeros(3, 2, 3,3,3) # [dim, B, D, H, W]
    dense_feature[:, coords[:,0], coords[:,1], coords[:,2], coords[:,3]]= sparse_features.t()
    print(dense_feature[:, 0, 0, 0, 1])
    print(dense_feature[:, 1, 0, 0, 2])输出, 刚好索引回来
    tensor([1., 1., 1.])
    tensor([2., 2., 2.])
    
    • 然后可以经过3D-Conv,后续接你需要的 任务头head,上面才是 VoxelNet的主干,也是最难理解的地方。
class VoxelNet(nn.Module):def __init__(self):super(VoxelNet, self).__init__()self.svfe = SVFE()self.cml = CML()# self.rpn = RPN()def voxel_indexing(self, sparse_features, coords):"""sparse_features: [P, C]coords:[P, 4]"""dim = sparse_features.shape[-1]device = sparse_features.devicedense_feature = Variable(torch.zeros(dim, cfg.N, cfg.D, cfg.H, cfg.W).to(device))dense_feature[:, coords[:,0], coords[:,1], coords[:,2], coords[:,3]]= sparse_features.t()dense_feature = dense_feature.transpose(0, 1)# print(f"dense_feature.shape = {dense_feature.shape}")# return dense_feature.transpose(0, 1) # dense_feature.transpose(0, 1):[ B, C, D, H, W]return dense_featuredef forward(self, voxel_features, voxel_coords):"""P: 一个batch合计的 voxel的数量T:一个voxel的点数 35C:每个点 的维度 7(=4 + 3)voxel_features: [P, T, C]voxel_coords: [P, 4(1+3)] => 每个voxel_coords 含4个维度,分别为 1+3,这个1就是指代这个 voxel 原来在 batch的第几个(就是这样来区分的),3表示grid的坐标"""print(f"forward=============>")print(f'voxel_features.shape = {voxel_features.shape}, voxel_coords.shape = {voxel_coords.shape}') # voxel_features.shape = (20284, 35, 7), voxel_coords.shape = (20284, 4)# feature learning networkvwfs = self.svfe(voxel_features) # vwfs:[P, C]print(f'=> vwfs.shape = {vwfs.shape}') # vwfs.shape = torch.Size([20284, 128])vwfs = self.voxel_indexing(vwfs,voxel_coords)print(f'voxel_indexing ==> vwfs.shape = {vwfs.shape}') # voxel_indexing ==> vwfs.shape = torch.Size([2, 128, 10, 400, 352]) [B, C, D, H, W]# convolutional middle networkcml_out = self.cml(vwfs)print(f"cml_out.shape = {cml_out.shape}") # cml_out.shape = torch.Size([2, 64, 2, 400, 352])# # region proposal network# # merge the depth and feature dim into one, output probability score map and regression map# psm,rm = self.rpn(cml_out.view(cfg.N,-1,cfg.H, cfg.W))# return psm, rm

2.数据处理

2.1单个样本处理

kitti.py文件的 def __getitem__(self, i):

可以看到,每帧lidar:[N, C],读取后经过这样处理:

  • 数据增强,
  • 范围过滤,
  • 处理成规则张量preprocess, 维度从 [N, C] 变为 [P, T, C], 其中,P不定,T=35,C=7

在这里插入图片描述

它是这样 处理的,可以学习代码:
其实,我不是很明白,这里为什么要 换维度?按理说3D-Conv都一样。

        # convert to  (D, H, W)voxel_coords = voxel_coords[:,[2,1,0]]

    def preprocess(self, lidar):# shuffling the pointsnp.random.shuffle(lidar)voxel_coords = ((lidar[:, :3] - np.array([self.xrange[0], self.yrange[0], self.zrange[0]])) / (self.vw, self.vh, self.vd)).astype(np.int32)# convert to  (D, H, W)voxel_coords = voxel_coords[:,[2,1,0]]voxel_coords, inv_ind, voxel_counts = np.unique(voxel_coords, axis=0, \return_inverse=True, return_counts=True)voxel_features = []for i in range(len(voxel_coords)):voxel = np.zeros((self.T, 7), dtype=np.float32)pts = lidar[inv_ind == i]if voxel_counts[i] > self.T:pts = pts[:self.T, :]voxel_counts[i] = self.T# augment the pointsvoxel[:pts.shape[0], :] = np.concatenate((pts, pts[:, :3] - np.mean(pts[:, :3], 0)), axis=1)voxel_features.append(voxel)return np.array(voxel_features), voxel_coords

2.2处理成batch

train.py文件中

处理流程:从batch中取出每个样本sample,给 每个样本sample 的coord的第0列添加序号,标记 是batch的第几个样本,方便后面转换为规则张量【主要是这个】。

    def detection_collate(batch):voxel_features = []voxel_coords = []for i, sample in enumerate(batch):voxel_features.append(sample[0])voxel_coords.append(np.pad(sample[1], ((0, 0), (1, 0)),mode='constant', constant_values=i))return np.concatenate(voxel_features), \np.concatenate(voxel_coords), \

最后,附上我一步步调试代码,到3D-conv

import torch.nn as nn
import torch.nn.functional as F
import torch
from torch.autograd import Variable
from config import config as cfg##### from my_kitti.py
import sys
sys.path.append(r"D:\workspace\【代码能力提升-深度学习】\voxel_and_pillar_code\VoxelNet-pytorch-master\VoxelNet-pytorch-master")import os
import os.path
import torch.utils.data as data
import utils
from utils import box3d_corner_to_center_batch, anchors_center_to_corner, corner_to_standup_box2d_batch
from data_aug import aug_data
# from box_overlaps import bbox_overlaps
import numpy as np
import cv2#### conv2d + bn + relu
class Conv2d(nn.Module):def __init__(self,in_channels,out_channels,k,s,p, activation=True, batch_norm=True):super(Conv2d, self).__init__()self.conv = nn.Conv2d(in_channels,out_channels,kernel_size=k,stride=s,padding=p)if batch_norm:self.bn = nn.BatchNorm2d(out_channels)else:self.bn = Noneself.activation = activationdef forward(self,x):x = self.conv(x)if self.bn is not None:x=self.bn(x)if self.activation:return F.relu(x,inplace=True)else:return x# conv3d + bn + relu
class Conv3d(nn.Module):def __init__(self, in_channels, out_channels, k, s, p, batch_norm=True):super(Conv3d, self).__init__()self.conv = nn.Conv3d(in_channels, out_channels, kernel_size=k, stride=s, padding=p)if batch_norm:self.bn = nn.BatchNorm3d(out_channels)else:self.bn = Nonedef forward(self, x):x = self.conv(x)if self.bn is not None:x = self.bn(x)return F.relu(x, inplace=True)# Fully Connected Network
class FCN(nn.Module):def __init__(self,cin,cout):super(FCN, self).__init__()self.cout = coutself.linear = nn.Linear(cin, cout)self.bn = nn.BatchNorm1d(cout)def forward(self,x):# KK is the stacked k across batchkk, t, _ = x.shape # x:[P, T, C]x = self.linear(x.view(kk*t,-1))x = F.relu(self.bn(x))return x.view(kk,t,-1)# Voxel Feature Encoding layer
class VFE(nn.Module):def __init__(self,cin,cout):super(VFE, self).__init__()assert cout % 2 == 0self.units = cout // 2self.fcn = FCN(cin,self.units)def forward(self, x, mask):# point-wise feauturepwf = self.fcn(x) # pwf:[P, T, C]#locally aggregated featurelaf = torch.max(pwf,1)[0].unsqueeze(1).repeat(1,cfg.T,1)# point-wise concat featurepwcf = torch.cat((pwf,laf),dim=2) # point-wise and locally, cat起来# apply maskmask = mask.unsqueeze(2).repeat(1, 1, self.units * 2)pwcf = pwcf * mask.float()return pwcf# Stacked Voxel Feature Encoding
class SVFE(nn.Module):def __init__(self):super(SVFE, self).__init__()self.vfe_1 = VFE(7,32)self.vfe_2 = VFE(32,128)self.fcn = FCN(128,128)def forward(self, x): # x:[P, T, C]mask = torch.ne(torch.max(x,2)[0], 0)x = self.vfe_1(x, mask)x = self.vfe_2(x, mask)x = self.fcn(x)# element-wise max poolingx = torch.max(x,1)[0] # x: [P, C], 相当于 只取每个voxel 的max featurereturn x# Convolutional Middle Layer
class CML(nn.Module):def __init__(self):super(CML, self).__init__()self.conv3d_1 = Conv3d(128, 64, 3, s=(2, 1, 1), p=(1, 1, 1))self.conv3d_2 = Conv3d(64, 64, 3, s=(1, 1, 1), p=(0, 1, 1))self.conv3d_3 = Conv3d(64, 64, 3, s=(2, 1, 1), p=(1, 1, 1))def forward(self, x):x = self.conv3d_1(x)x = self.conv3d_2(x)x = self.conv3d_3(x)return x# Region Proposal Network
# class RPN(nn.Module):
#     def __init__(self):
#         super(RPN, self).__init__()
#         self.block_1 = [Conv2d(128, 128, 3, 2, 1)]
#         self.block_1 += [Conv2d(128, 128, 3, 1, 1) for _ in range(3)]
#         self.block_1 = nn.Sequential(*self.block_1)#         self.block_2 = [Conv2d(128, 128, 3, 2, 1)]
#         self.block_2 += [Conv2d(128, 128, 3, 1, 1) for _ in range(5)]
#         self.block_2 = nn.Sequential(*self.block_2)#         self.block_3 = [Conv2d(128, 256, 3, 2, 1)]
#         self.block_3 += [nn.Conv2d(256, 256, 3, 1, 1) for _ in range(5)]
#         self.block_3 = nn.Sequential(*self.block_3)#         self.deconv_1 = nn.Sequential(nn.ConvTranspose2d(256, 256, 4, 4, 0),nn.BatchNorm2d(256))
#         self.deconv_2 = nn.Sequential(nn.ConvTranspose2d(128, 256, 2, 2, 0),nn.BatchNorm2d(256))
#         self.deconv_3 = nn.Sequential(nn.ConvTranspose2d(128, 256, 1, 1, 0),nn.BatchNorm2d(256))#         self.score_head = Conv2d(768, cfg.anchors_per_position, 1, 1, 0, activation=False, batch_norm=False)
#         self.reg_head = Conv2d(768, 7 * cfg.anchors_per_position, 1, 1, 0, activation=False, batch_norm=False)#     def forward(self,x):
#         x = self.block_1(x)
#         x_skip_1 = x
#         x = self.block_2(x)
#         x_skip_2 = x
#         x = self.block_3(x)
#         x_0 = self.deconv_1(x)
#         x_1 = self.deconv_2(x_skip_2)
#         x_2 = self.deconv_3(x_skip_1)
#         x = torch.cat((x_0,x_1,x_2),1)
#         return self.score_head(x),self.reg_head(x)class VoxelNet(nn.Module):def __init__(self):super(VoxelNet, self).__init__()self.svfe = SVFE()self.cml = CML()# self.rpn = RPN()def voxel_indexing(self, sparse_features, coords):"""sparse_features: [P, C]coords:[P, 4]"""dim = sparse_features.shape[-1]device = sparse_features.devicedense_feature = Variable(torch.zeros(dim, cfg.N, cfg.D, cfg.H, cfg.W).to(device))dense_feature[:, coords[:,0], coords[:,1], coords[:,2], coords[:,3]]= sparse_features.t()dense_feature = dense_feature.transpose(0, 1)# print(f"dense_feature.shape = {dense_feature.shape}")# return dense_feature.transpose(0, 1) # dense_feature.transpose(0, 1):[ B, C, D, H, W]return dense_featuredef forward(self, voxel_features, voxel_coords):"""P: 一个batch合计的 voxel的数量T:一个voxel的点数 35C:每个点 的维度 7(=4 + 3)voxel_features: [P, T, C]voxel_coords: [P, 4(1+3)] => 每个voxel_coords 含4个维度,分别为 1+3,这个1就是指代这个 voxel 原来在 batch的第几个(就是这样来区分的),3表示grid的坐标"""print(f"forward=============>")print(f'voxel_features.shape = {voxel_features.shape}, voxel_coords.shape = {voxel_coords.shape}') # voxel_features.shape = (20284, 35, 7), voxel_coords.shape = (20284, 4)# feature learning networkvwfs = self.svfe(voxel_features) # vwfs:[P, C]print(f'=> vwfs.shape = {vwfs.shape}') # vwfs.shape = torch.Size([20284, 128])vwfs = self.voxel_indexing(vwfs,voxel_coords)print(f'voxel_indexing ==> vwfs.shape = {vwfs.shape}') # voxel_indexing ==> vwfs.shape = torch.Size([2, 128, 10, 400, 352]) [B, C, D, H, W]# convolutional middle networkcml_out = self.cml(vwfs)print(f"cml_out.shape = {cml_out.shape}") # cml_out.shape = torch.Size([2, 64, 2, 400, 352])# # region proposal network# # merge the depth and feature dim into one, output probability score map and regression map# psm,rm = self.rpn(cml_out.view(cfg.N,-1,cfg.H, cfg.W))# return psm, rmif __name__ == '__main__':class My_dataset(data.Dataset):def __init__(self, cfg):self.T = cfg.Tself.vd = cfg.vdself.vh = cfg.vhself.vw = cfg.vwself.xrange = cfg.xrangeself.yrange = cfg.yrangeself.zrange = cfg.zrangedef preprocess(self, lidar):# shuffling the pointsnp.random.shuffle(lidar)voxel_coords = ((lidar[:, :3] - np.array([self.xrange[0], self.yrange[0], self.zrange[0]])) / (self.vw, self.vh, self.vd)).astype(np.int32)# convert to  (D, H, W)voxel_coords = voxel_coords[:,[2,1,0]]voxel_coords, inv_ind, voxel_counts = np.unique(voxel_coords, axis=0, \return_inverse=True, return_counts=True)voxel_features = []for i in range(len(voxel_coords)):voxel = np.zeros((self.T, 7), dtype=np.float32)pts = lidar[inv_ind == i]if voxel_counts[i] > self.T:pts = pts[:self.T, :]voxel_counts[i] = self.T# augment the pointsvoxel[:pts.shape[0], :] = np.concatenate((pts, pts[:, :3] - np.mean(pts[:, :3], 0)), axis=1)voxel_features.append(voxel)return np.array(voxel_features), voxel_coords def detection_collate(batch):voxel_features = []voxel_coords = []for i, sample in enumerate(batch):voxel_features.append(sample[0])voxel_coords.append(np.pad(sample[1], ((0, 0), (1, 0)),mode='constant', constant_values=i))return np.concatenate(voxel_features), \np.concatenate(voxel_coords), \from config import config as cfg    my_dataset = My_dataset(cfg)        # lidar_file = self.lidar_path + '/' + self.file_list[i] + '.bin'lidar_file = r"D:\workspace\【代码能力提升-深度学习】\voxel_and_pillar_code\simple-pointpillar-main\simple-pointpillar-main\kitti_test_data\000000.bin"lidar = np.fromfile(lidar_file, dtype=np.float32).reshape(-1, 4) # (N, 4)print(f'lidar.shape = {lidar.shape}') # lidar.shape = (115384, 4)# 对单个样本lidar进行数据处理,包括数据增强,限制范围,预处理# 这里我们没有 gt_box3d ,所以忽略 aug_data# data augmentation# lidar, gt_box3d = aug_data(lidar, gt_box3d) # specify a rangelidar = utils.get_filtered_lidar(lidar )print(f'get_filtered_lidar => lidar.shape = {lidar.shape}') # get_filtered_lidar => lidar.shape = (62853, 4)voxel_features, voxel_coords = my_dataset.preprocess(lidar)print(f'voxel_features.shape = {voxel_features.shape}, voxel_coords.shape = {voxel_coords.shape}') print(f'type(voxel_features) = {type(voxel_features)}, type(voxel_coords) = {type(voxel_coords)}')# voxel_features.shape = (10142, 35, 7) = (P, T, C(4 + 3)), voxel_coords.shape = (10142, 3) (P, C(xyz))# type(voxel_features) = <class 'numpy.ndarray'>, type(voxel_coords) = <class 'numpy.ndarray'># 模拟一个 batch 两个样本batch = []batch.append((voxel_features, voxel_coords))batch.append((voxel_features, voxel_coords))batch_voxel_features, batch_voxel_coords = detection_collate(batch)# batch_voxel_features = Variable(torch.cuda.FloatTensor(batch_voxel_features)) # 变为 tensor类型batch_voxel_features = Variable(torch.FloatTensor(batch_voxel_features)) # 变为 tensor类型# print(f'batch_voxel_features.shape = {batch_voxel_features.shape}')# print(batch_voxel_coords[-5:])    model = VoxelNet()y = model(batch_voxel_features, batch_voxel_coords)

这篇关于【代码能力提升 | 代码阅读学习】分析 VoxelNet 的 主干的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/657780

相关文章

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动

MySQL数据库函数之JSON_EXTRACT示例代码

《MySQL数据库函数之JSON_EXTRACT示例代码》:本文主要介绍MySQL数据库函数之JSON_EXTRACT的相关资料,JSON_EXTRACT()函数用于从JSON文档中提取值,支持对... 目录前言基本语法路径表达式示例示例 1: 提取简单值示例 2: 提取嵌套值示例 3: 提取数组中的值注意

CSS3中使用flex和grid实现等高元素布局的示例代码

《CSS3中使用flex和grid实现等高元素布局的示例代码》:本文主要介绍了使用CSS3中的Flexbox和Grid布局实现等高元素布局的方法,通过简单的两列实现、每行放置3列以及全部代码的展示,展示了这两种布局方式的实现细节和效果,详细内容请阅读本文,希望能对你有所帮助... 过往的实现方法是使用浮动加

JAVA调用Deepseek的api完成基本对话简单代码示例

《JAVA调用Deepseek的api完成基本对话简单代码示例》:本文主要介绍JAVA调用Deepseek的api完成基本对话的相关资料,文中详细讲解了如何获取DeepSeekAPI密钥、添加H... 获取API密钥首先,从DeepSeek平台获取API密钥,用于身份验证。添加HTTP客户端依赖使用Jav

Java实现状态模式的示例代码

《Java实现状态模式的示例代码》状态模式是一种行为型设计模式,允许对象根据其内部状态改变行为,本文主要介绍了Java实现状态模式的示例代码,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来... 目录一、简介1、定义2、状态模式的结构二、Java实现案例1、电灯开关状态案例2、番茄工作法状态案例

nginx-rtmp-module模块实现视频点播的示例代码

《nginx-rtmp-module模块实现视频点播的示例代码》本文主要介绍了nginx-rtmp-module模块实现视频点播,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习... 目录预置条件Nginx点播基本配置点播远程文件指定多个播放位置参考预置条件配置点播服务器 192.

C#使用DeepSeek API实现自然语言处理,文本分类和情感分析

《C#使用DeepSeekAPI实现自然语言处理,文本分类和情感分析》在C#中使用DeepSeekAPI可以实现多种功能,例如自然语言处理、文本分类、情感分析等,本文主要为大家介绍了具体实现步骤,... 目录准备工作文本生成文本分类问答系统代码生成翻译功能文本摘要文本校对图像描述生成总结在C#中使用Deep

CSS自定义浏览器滚动条样式完整代码

《CSS自定义浏览器滚动条样式完整代码》:本文主要介绍了如何使用CSS自定义浏览器滚动条的样式,包括隐藏滚动条的角落、设置滚动条的基本样式、轨道样式和滑块样式,并提供了完整的CSS代码示例,通过这些技巧,你可以为你的网站添加个性化的滚动条样式,从而提升用户体验,详细内容请阅读本文,希望能对你有所帮助...

深入解析Spring TransactionTemplate 高级用法(示例代码)

《深入解析SpringTransactionTemplate高级用法(示例代码)》TransactionTemplate是Spring框架中一个强大的工具,它允许开发者以编程方式控制事务,通过... 目录1. TransactionTemplate 的核心概念2. 核心接口和类3. TransactionT