【代码能力提升 | 代码阅读学习】分析 VoxelNet 的 主干

2024-01-29 18:20

本文主要是介绍【代码能力提升 | 代码阅读学习】分析 VoxelNet 的 主干,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 前言
  • 代码分析
    • VoxelNet model
    • 2.数据处理
      • 2.1单个样本处理
      • 2.2处理成batch
  • 最后,附上我一步步调试代码,到3D-conv

前言

代码来自:https://github.com/skyhehe123/VoxelNet-pytorch
其中 测试数据来自:https://github.com/gakkiri/simple-pointpillar

代码分析

VoxelNet model

  1. model forward()就是模型的输入,voxel_features, voxel_coords是一个 batch 的数据。

    • voxel_features: [P, T, C], voxel_coords: [P, 4]。如何知道是 batch中的第几个样本? voxel_coords中的[P, 0]维度告诉了,其中的数据巧妙处理在 文件 kitti.pytrain.py, 稍后我们介绍
    • 转换为grid tensor: voxel_indexing(), 其中sparse_features.t()应该有.t(), 不然维度不匹配报错,原代码错了。经过这一步,输出维度为[B, C, D, H, W]。【这个函数妙啊,一个索引匹配就完成了 点云=> 规则张量,美中不足的是原代码写错了,需要加个转置.t()
      • 一个小样例测试这段代码 正确与否
    import torchsparse_features = torch.tensor([[1.0, 1, 1], [2, 2, 2]])
    coords = torch.IntTensor([[0,0,0,1], [1,0,0,2]]) # [P, 4(id,x,y,z)]dense_feature = torch.zeros(3, 2, 3,3,3) # [dim, B, D, H, W]
    dense_feature[:, coords[:,0], coords[:,1], coords[:,2], coords[:,3]]= sparse_features.t()
    print(dense_feature[:, 0, 0, 0, 1])
    print(dense_feature[:, 1, 0, 0, 2])输出, 刚好索引回来
    tensor([1., 1., 1.])
    tensor([2., 2., 2.])
    
    • 然后可以经过3D-Conv,后续接你需要的 任务头head,上面才是 VoxelNet的主干,也是最难理解的地方。
class VoxelNet(nn.Module):def __init__(self):super(VoxelNet, self).__init__()self.svfe = SVFE()self.cml = CML()# self.rpn = RPN()def voxel_indexing(self, sparse_features, coords):"""sparse_features: [P, C]coords:[P, 4]"""dim = sparse_features.shape[-1]device = sparse_features.devicedense_feature = Variable(torch.zeros(dim, cfg.N, cfg.D, cfg.H, cfg.W).to(device))dense_feature[:, coords[:,0], coords[:,1], coords[:,2], coords[:,3]]= sparse_features.t()dense_feature = dense_feature.transpose(0, 1)# print(f"dense_feature.shape = {dense_feature.shape}")# return dense_feature.transpose(0, 1) # dense_feature.transpose(0, 1):[ B, C, D, H, W]return dense_featuredef forward(self, voxel_features, voxel_coords):"""P: 一个batch合计的 voxel的数量T:一个voxel的点数 35C:每个点 的维度 7(=4 + 3)voxel_features: [P, T, C]voxel_coords: [P, 4(1+3)] => 每个voxel_coords 含4个维度,分别为 1+3,这个1就是指代这个 voxel 原来在 batch的第几个(就是这样来区分的),3表示grid的坐标"""print(f"forward=============>")print(f'voxel_features.shape = {voxel_features.shape}, voxel_coords.shape = {voxel_coords.shape}') # voxel_features.shape = (20284, 35, 7), voxel_coords.shape = (20284, 4)# feature learning networkvwfs = self.svfe(voxel_features) # vwfs:[P, C]print(f'=> vwfs.shape = {vwfs.shape}') # vwfs.shape = torch.Size([20284, 128])vwfs = self.voxel_indexing(vwfs,voxel_coords)print(f'voxel_indexing ==> vwfs.shape = {vwfs.shape}') # voxel_indexing ==> vwfs.shape = torch.Size([2, 128, 10, 400, 352]) [B, C, D, H, W]# convolutional middle networkcml_out = self.cml(vwfs)print(f"cml_out.shape = {cml_out.shape}") # cml_out.shape = torch.Size([2, 64, 2, 400, 352])# # region proposal network# # merge the depth and feature dim into one, output probability score map and regression map# psm,rm = self.rpn(cml_out.view(cfg.N,-1,cfg.H, cfg.W))# return psm, rm

2.数据处理

2.1单个样本处理

kitti.py文件的 def __getitem__(self, i):

可以看到,每帧lidar:[N, C],读取后经过这样处理:

  • 数据增强,
  • 范围过滤,
  • 处理成规则张量preprocess, 维度从 [N, C] 变为 [P, T, C], 其中,P不定,T=35,C=7

在这里插入图片描述

它是这样 处理的,可以学习代码:
其实,我不是很明白,这里为什么要 换维度?按理说3D-Conv都一样。

        # convert to  (D, H, W)voxel_coords = voxel_coords[:,[2,1,0]]

    def preprocess(self, lidar):# shuffling the pointsnp.random.shuffle(lidar)voxel_coords = ((lidar[:, :3] - np.array([self.xrange[0], self.yrange[0], self.zrange[0]])) / (self.vw, self.vh, self.vd)).astype(np.int32)# convert to  (D, H, W)voxel_coords = voxel_coords[:,[2,1,0]]voxel_coords, inv_ind, voxel_counts = np.unique(voxel_coords, axis=0, \return_inverse=True, return_counts=True)voxel_features = []for i in range(len(voxel_coords)):voxel = np.zeros((self.T, 7), dtype=np.float32)pts = lidar[inv_ind == i]if voxel_counts[i] > self.T:pts = pts[:self.T, :]voxel_counts[i] = self.T# augment the pointsvoxel[:pts.shape[0], :] = np.concatenate((pts, pts[:, :3] - np.mean(pts[:, :3], 0)), axis=1)voxel_features.append(voxel)return np.array(voxel_features), voxel_coords

2.2处理成batch

train.py文件中

处理流程:从batch中取出每个样本sample,给 每个样本sample 的coord的第0列添加序号,标记 是batch的第几个样本,方便后面转换为规则张量【主要是这个】。

    def detection_collate(batch):voxel_features = []voxel_coords = []for i, sample in enumerate(batch):voxel_features.append(sample[0])voxel_coords.append(np.pad(sample[1], ((0, 0), (1, 0)),mode='constant', constant_values=i))return np.concatenate(voxel_features), \np.concatenate(voxel_coords), \

最后,附上我一步步调试代码,到3D-conv

import torch.nn as nn
import torch.nn.functional as F
import torch
from torch.autograd import Variable
from config import config as cfg##### from my_kitti.py
import sys
sys.path.append(r"D:\workspace\【代码能力提升-深度学习】\voxel_and_pillar_code\VoxelNet-pytorch-master\VoxelNet-pytorch-master")import os
import os.path
import torch.utils.data as data
import utils
from utils import box3d_corner_to_center_batch, anchors_center_to_corner, corner_to_standup_box2d_batch
from data_aug import aug_data
# from box_overlaps import bbox_overlaps
import numpy as np
import cv2#### conv2d + bn + relu
class Conv2d(nn.Module):def __init__(self,in_channels,out_channels,k,s,p, activation=True, batch_norm=True):super(Conv2d, self).__init__()self.conv = nn.Conv2d(in_channels,out_channels,kernel_size=k,stride=s,padding=p)if batch_norm:self.bn = nn.BatchNorm2d(out_channels)else:self.bn = Noneself.activation = activationdef forward(self,x):x = self.conv(x)if self.bn is not None:x=self.bn(x)if self.activation:return F.relu(x,inplace=True)else:return x# conv3d + bn + relu
class Conv3d(nn.Module):def __init__(self, in_channels, out_channels, k, s, p, batch_norm=True):super(Conv3d, self).__init__()self.conv = nn.Conv3d(in_channels, out_channels, kernel_size=k, stride=s, padding=p)if batch_norm:self.bn = nn.BatchNorm3d(out_channels)else:self.bn = Nonedef forward(self, x):x = self.conv(x)if self.bn is not None:x = self.bn(x)return F.relu(x, inplace=True)# Fully Connected Network
class FCN(nn.Module):def __init__(self,cin,cout):super(FCN, self).__init__()self.cout = coutself.linear = nn.Linear(cin, cout)self.bn = nn.BatchNorm1d(cout)def forward(self,x):# KK is the stacked k across batchkk, t, _ = x.shape # x:[P, T, C]x = self.linear(x.view(kk*t,-1))x = F.relu(self.bn(x))return x.view(kk,t,-1)# Voxel Feature Encoding layer
class VFE(nn.Module):def __init__(self,cin,cout):super(VFE, self).__init__()assert cout % 2 == 0self.units = cout // 2self.fcn = FCN(cin,self.units)def forward(self, x, mask):# point-wise feauturepwf = self.fcn(x) # pwf:[P, T, C]#locally aggregated featurelaf = torch.max(pwf,1)[0].unsqueeze(1).repeat(1,cfg.T,1)# point-wise concat featurepwcf = torch.cat((pwf,laf),dim=2) # point-wise and locally, cat起来# apply maskmask = mask.unsqueeze(2).repeat(1, 1, self.units * 2)pwcf = pwcf * mask.float()return pwcf# Stacked Voxel Feature Encoding
class SVFE(nn.Module):def __init__(self):super(SVFE, self).__init__()self.vfe_1 = VFE(7,32)self.vfe_2 = VFE(32,128)self.fcn = FCN(128,128)def forward(self, x): # x:[P, T, C]mask = torch.ne(torch.max(x,2)[0], 0)x = self.vfe_1(x, mask)x = self.vfe_2(x, mask)x = self.fcn(x)# element-wise max poolingx = torch.max(x,1)[0] # x: [P, C], 相当于 只取每个voxel 的max featurereturn x# Convolutional Middle Layer
class CML(nn.Module):def __init__(self):super(CML, self).__init__()self.conv3d_1 = Conv3d(128, 64, 3, s=(2, 1, 1), p=(1, 1, 1))self.conv3d_2 = Conv3d(64, 64, 3, s=(1, 1, 1), p=(0, 1, 1))self.conv3d_3 = Conv3d(64, 64, 3, s=(2, 1, 1), p=(1, 1, 1))def forward(self, x):x = self.conv3d_1(x)x = self.conv3d_2(x)x = self.conv3d_3(x)return x# Region Proposal Network
# class RPN(nn.Module):
#     def __init__(self):
#         super(RPN, self).__init__()
#         self.block_1 = [Conv2d(128, 128, 3, 2, 1)]
#         self.block_1 += [Conv2d(128, 128, 3, 1, 1) for _ in range(3)]
#         self.block_1 = nn.Sequential(*self.block_1)#         self.block_2 = [Conv2d(128, 128, 3, 2, 1)]
#         self.block_2 += [Conv2d(128, 128, 3, 1, 1) for _ in range(5)]
#         self.block_2 = nn.Sequential(*self.block_2)#         self.block_3 = [Conv2d(128, 256, 3, 2, 1)]
#         self.block_3 += [nn.Conv2d(256, 256, 3, 1, 1) for _ in range(5)]
#         self.block_3 = nn.Sequential(*self.block_3)#         self.deconv_1 = nn.Sequential(nn.ConvTranspose2d(256, 256, 4, 4, 0),nn.BatchNorm2d(256))
#         self.deconv_2 = nn.Sequential(nn.ConvTranspose2d(128, 256, 2, 2, 0),nn.BatchNorm2d(256))
#         self.deconv_3 = nn.Sequential(nn.ConvTranspose2d(128, 256, 1, 1, 0),nn.BatchNorm2d(256))#         self.score_head = Conv2d(768, cfg.anchors_per_position, 1, 1, 0, activation=False, batch_norm=False)
#         self.reg_head = Conv2d(768, 7 * cfg.anchors_per_position, 1, 1, 0, activation=False, batch_norm=False)#     def forward(self,x):
#         x = self.block_1(x)
#         x_skip_1 = x
#         x = self.block_2(x)
#         x_skip_2 = x
#         x = self.block_3(x)
#         x_0 = self.deconv_1(x)
#         x_1 = self.deconv_2(x_skip_2)
#         x_2 = self.deconv_3(x_skip_1)
#         x = torch.cat((x_0,x_1,x_2),1)
#         return self.score_head(x),self.reg_head(x)class VoxelNet(nn.Module):def __init__(self):super(VoxelNet, self).__init__()self.svfe = SVFE()self.cml = CML()# self.rpn = RPN()def voxel_indexing(self, sparse_features, coords):"""sparse_features: [P, C]coords:[P, 4]"""dim = sparse_features.shape[-1]device = sparse_features.devicedense_feature = Variable(torch.zeros(dim, cfg.N, cfg.D, cfg.H, cfg.W).to(device))dense_feature[:, coords[:,0], coords[:,1], coords[:,2], coords[:,3]]= sparse_features.t()dense_feature = dense_feature.transpose(0, 1)# print(f"dense_feature.shape = {dense_feature.shape}")# return dense_feature.transpose(0, 1) # dense_feature.transpose(0, 1):[ B, C, D, H, W]return dense_featuredef forward(self, voxel_features, voxel_coords):"""P: 一个batch合计的 voxel的数量T:一个voxel的点数 35C:每个点 的维度 7(=4 + 3)voxel_features: [P, T, C]voxel_coords: [P, 4(1+3)] => 每个voxel_coords 含4个维度,分别为 1+3,这个1就是指代这个 voxel 原来在 batch的第几个(就是这样来区分的),3表示grid的坐标"""print(f"forward=============>")print(f'voxel_features.shape = {voxel_features.shape}, voxel_coords.shape = {voxel_coords.shape}') # voxel_features.shape = (20284, 35, 7), voxel_coords.shape = (20284, 4)# feature learning networkvwfs = self.svfe(voxel_features) # vwfs:[P, C]print(f'=> vwfs.shape = {vwfs.shape}') # vwfs.shape = torch.Size([20284, 128])vwfs = self.voxel_indexing(vwfs,voxel_coords)print(f'voxel_indexing ==> vwfs.shape = {vwfs.shape}') # voxel_indexing ==> vwfs.shape = torch.Size([2, 128, 10, 400, 352]) [B, C, D, H, W]# convolutional middle networkcml_out = self.cml(vwfs)print(f"cml_out.shape = {cml_out.shape}") # cml_out.shape = torch.Size([2, 64, 2, 400, 352])# # region proposal network# # merge the depth and feature dim into one, output probability score map and regression map# psm,rm = self.rpn(cml_out.view(cfg.N,-1,cfg.H, cfg.W))# return psm, rmif __name__ == '__main__':class My_dataset(data.Dataset):def __init__(self, cfg):self.T = cfg.Tself.vd = cfg.vdself.vh = cfg.vhself.vw = cfg.vwself.xrange = cfg.xrangeself.yrange = cfg.yrangeself.zrange = cfg.zrangedef preprocess(self, lidar):# shuffling the pointsnp.random.shuffle(lidar)voxel_coords = ((lidar[:, :3] - np.array([self.xrange[0], self.yrange[0], self.zrange[0]])) / (self.vw, self.vh, self.vd)).astype(np.int32)# convert to  (D, H, W)voxel_coords = voxel_coords[:,[2,1,0]]voxel_coords, inv_ind, voxel_counts = np.unique(voxel_coords, axis=0, \return_inverse=True, return_counts=True)voxel_features = []for i in range(len(voxel_coords)):voxel = np.zeros((self.T, 7), dtype=np.float32)pts = lidar[inv_ind == i]if voxel_counts[i] > self.T:pts = pts[:self.T, :]voxel_counts[i] = self.T# augment the pointsvoxel[:pts.shape[0], :] = np.concatenate((pts, pts[:, :3] - np.mean(pts[:, :3], 0)), axis=1)voxel_features.append(voxel)return np.array(voxel_features), voxel_coords def detection_collate(batch):voxel_features = []voxel_coords = []for i, sample in enumerate(batch):voxel_features.append(sample[0])voxel_coords.append(np.pad(sample[1], ((0, 0), (1, 0)),mode='constant', constant_values=i))return np.concatenate(voxel_features), \np.concatenate(voxel_coords), \from config import config as cfg    my_dataset = My_dataset(cfg)        # lidar_file = self.lidar_path + '/' + self.file_list[i] + '.bin'lidar_file = r"D:\workspace\【代码能力提升-深度学习】\voxel_and_pillar_code\simple-pointpillar-main\simple-pointpillar-main\kitti_test_data\000000.bin"lidar = np.fromfile(lidar_file, dtype=np.float32).reshape(-1, 4) # (N, 4)print(f'lidar.shape = {lidar.shape}') # lidar.shape = (115384, 4)# 对单个样本lidar进行数据处理,包括数据增强,限制范围,预处理# 这里我们没有 gt_box3d ,所以忽略 aug_data# data augmentation# lidar, gt_box3d = aug_data(lidar, gt_box3d) # specify a rangelidar = utils.get_filtered_lidar(lidar )print(f'get_filtered_lidar => lidar.shape = {lidar.shape}') # get_filtered_lidar => lidar.shape = (62853, 4)voxel_features, voxel_coords = my_dataset.preprocess(lidar)print(f'voxel_features.shape = {voxel_features.shape}, voxel_coords.shape = {voxel_coords.shape}') print(f'type(voxel_features) = {type(voxel_features)}, type(voxel_coords) = {type(voxel_coords)}')# voxel_features.shape = (10142, 35, 7) = (P, T, C(4 + 3)), voxel_coords.shape = (10142, 3) (P, C(xyz))# type(voxel_features) = <class 'numpy.ndarray'>, type(voxel_coords) = <class 'numpy.ndarray'># 模拟一个 batch 两个样本batch = []batch.append((voxel_features, voxel_coords))batch.append((voxel_features, voxel_coords))batch_voxel_features, batch_voxel_coords = detection_collate(batch)# batch_voxel_features = Variable(torch.cuda.FloatTensor(batch_voxel_features)) # 变为 tensor类型batch_voxel_features = Variable(torch.FloatTensor(batch_voxel_features)) # 变为 tensor类型# print(f'batch_voxel_features.shape = {batch_voxel_features.shape}')# print(batch_voxel_coords[-5:])    model = VoxelNet()y = model(batch_voxel_features, batch_voxel_coords)

这篇关于【代码能力提升 | 代码阅读学习】分析 VoxelNet 的 主干的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/657780

相关文章

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

SpringBoot+RustFS 实现文件切片极速上传的实例代码

《SpringBoot+RustFS实现文件切片极速上传的实例代码》本文介绍利用SpringBoot和RustFS构建高性能文件切片上传系统,实现大文件秒传、断点续传和分片上传等功能,具有一定的参考... 目录一、为什么选择 RustFS + SpringBoot?二、环境准备与部署2.1 安装 RustF

Python实现Excel批量样式修改器(附完整代码)

《Python实现Excel批量样式修改器(附完整代码)》这篇文章主要为大家详细介绍了如何使用Python实现一个Excel批量样式修改器,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录前言功能特性核心功能界面特性系统要求安装说明使用指南基本操作流程高级功能技术实现核心技术栈关键函

Redis实现高效内存管理的示例代码

《Redis实现高效内存管理的示例代码》Redis内存管理是其核心功能之一,为了高效地利用内存,Redis采用了多种技术和策略,如优化的数据结构、内存分配策略、内存回收、数据压缩等,下面就来详细的介绍... 目录1. 内存分配策略jemalloc 的使用2. 数据压缩和编码ziplist示例代码3. 优化的

Python 基于http.server模块实现简单http服务的代码举例

《Python基于http.server模块实现简单http服务的代码举例》Pythonhttp.server模块通过继承BaseHTTPRequestHandler处理HTTP请求,使用Threa... 目录测试环境代码实现相关介绍模块简介类及相关函数简介参考链接测试环境win11专业版python

Python从Word文档中提取图片并生成PPT的操作代码

《Python从Word文档中提取图片并生成PPT的操作代码》在日常办公场景中,我们经常需要从Word文档中提取图片,并将这些图片整理到PowerPoint幻灯片中,手动完成这一任务既耗时又容易出错,... 目录引言背景与需求解决方案概述代码解析代码核心逻辑说明总结引言在日常办公场景中,我们经常需要从 W

使用Spring Cache本地缓存示例代码

《使用SpringCache本地缓存示例代码》缓存是提高应用程序性能的重要手段,通过将频繁访问的数据存储在内存中,可以减少数据库访问次数,从而加速数据读取,:本文主要介绍使用SpringCac... 目录一、Spring Cache简介核心特点:二、基础配置1. 添加依赖2. 启用缓存3. 缓存配置方案方案

深度剖析SpringBoot日志性能提升的原因与解决

《深度剖析SpringBoot日志性能提升的原因与解决》日志记录本该是辅助工具,却为何成了性能瓶颈,SpringBoot如何用代码彻底破解日志导致的高延迟问题,感兴趣的小伙伴可以跟随小编一起学习一下... 目录前言第一章:日志性能陷阱的底层原理1.1 日志级别的“双刃剑”效应1.2 同步日志的“吞吐量杀手”

Java利用@SneakyThrows注解提升异常处理效率详解

《Java利用@SneakyThrows注解提升异常处理效率详解》这篇文章将深度剖析@SneakyThrows的原理,用法,适用场景以及隐藏的陷阱,看看它如何让Java异常处理效率飙升50%,感兴趣的... 目录前言一、检查型异常的“诅咒”:为什么Java开发者讨厌它1.1 检查型异常的痛点1.2 为什么说

MySQL的配置文件详解及实例代码

《MySQL的配置文件详解及实例代码》MySQL的配置文件是服务器运行的重要组成部分,用于设置服务器操作的各种参数,下面:本文主要介绍MySQL配置文件的相关资料,文中通过代码介绍的非常详细,需要... 目录前言一、配置文件结构1.[mysqld]2.[client]3.[mysql]4.[mysqldum