模糊聚类算法(FCM)和硬聚类算法(HCM)的VB6.0实现及其应用

2024-01-29 12:32

本文主要是介绍模糊聚类算法(FCM)和硬聚类算法(HCM)的VB6.0实现及其应用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

程序实现:

    上面的公式看似复杂,其实我们关心的就是最后的5个计算步骤,这里说明一下,有的书上以隶属度矩阵的某一范数小于一定值作为收敛的条件,这也可,不过计算量稍微要大一点了。

        程序采用VB6.0编制,完全按照以上的步骤进行。

    

'程序实现功能:模糊聚类和硬聚类
'作    者: laviewpbt
'联系方式:
laviewpbt@sina.com
'QQ:33184777
'版本:Version 2.3.1
'说明:复制请保留源作者信息,转载请说明,欢迎大家提出意见和建议


Private Declare Function GetTickCount Lib "kernel32" () As Long

Private Enum IniCenterMethod    '初始中心的方法
    CreateRandom                '随机的中心点
    CreateByHcm                 '由HCM创建的中心点
    CreateByRandomZadeh         '先随机创建隶属矩阵,然后计算得到的中心点

    CreateByHand                '手工确定初始中心点

End Enum


Private Enum AntiFuzzyMethod    '反模糊的方法
    Max                         '最大隶属度法
    Middle                      '中位数法
    Mean                        '加权均值法
End Enum


Private Type FcmInfo
     Center() As Double         '聚类中心
     Degree() As Double         '隶属度,为Double类型
     Class() As Byte            '记录数据属于那一类
     TimeUse As Long            '所用时间
     Iterations  As Long        '迭带次数
     ErrMsg As String           '错误信息
End Type


Private Type HcmInfo
    Center() As Double          '聚类中心
    Class() As Byte             '记录数据属于那一类
    TimeUse As Long             '所用时间
    Iterations  As Long         '迭带次数
    ErrMsg As String            '错误信息
End Type

'*************************************************************************************
'*    作    者 :    laviewpbt
'*    函 数 名 :    Fcm
'*    参    数 :    Data     -   待分类的样本,第一维的大小表示样本的个数,
'*                                第二维的大小表示样本的维数
'*                   Cluster  -   分类数
'*                   CreateIniCenter - 初始聚类中心的创建方法
'*                   AntiFuzzy -  反模糊化的方法
'*                   Exponent  -  一个控制聚类效果的参数,一般取2
'*                   Maxiterations  - 最大的迭代次数
'*                   MinImprovement - 最小的改进参数(两次迭代间聚类中心的距离)
'*    返回值 :      FcmInfo结构,记录了相关的参数
'*    功能描述 :    利用模糊理论的聚类方法把数据分类
'*    日    期 :    2004-10-27 10.25.32
'*    修 改 人 :    laviewpbt
'*    日    期 :    2006-11-7 19.25.31
'*    版    本 :    Version 2.3.1
'**************************************************************************************



Private Function Fcm(ByRef Data() As Double, ByVal Cluster As Long, Optional ByVal CreateIniCenter As IniCenterMethod = IniCenterMethod.CreateByHcm, Optional AntiFuzzy As AntiFuzzyMethod = Max, Optional Exponent As Byte = 2, Optional Maxiterations As Long = 400, Optional MinImprovement As Double = 0.01, Optional ByRef CenterByHandle As Variant) As FcmInfo
    If ArrayRange(Data) <> 2 Then
        Fcm.ErrMsg = "数据只能为二维数组"
        Exit Function
    End If
    Dim i As Long, j As Long, k As Long, l As Long, m As Long
    Dim DataNumber As Long, DataSize As Long
    Dim Temp As Double, Sum1 As Double, Sum2 As Double, Sum3 As Double, Index As Integer
    Dim OldCenter() As Double
    Fcm.TimeUse = GetTickCount
    DataNumber = UBound(Data, 1): DataSize = UBound(Data, 2)
    ReDim Fcm.center(1 To Cluster, 1 To DataSize) As Double
    ReDim Fcm.Degree(1 To Cluster, 1 To DataNumber) As Double
    ReDim Fcm.Class(1 To DataNumber) As Byte
    ReDim OldCenter(1 To Cluster, 1 To DataSize) As Double
    On Error GoTo ErrHandle:
    Randomize
    If CreateIniCenter = CreateRandom Then
        For i = 1 To Cluster
            For j = 1 To DataSize
                OldCenter(i, j) = Data(Rnd * DataNumber, j)    '产生随机初始中心点
            Next
        Next
    ElseIf CreateIniCenter = CreateByHcm Then
        Dim HcmCenter As HcmInfo
        HcmCenter = Hcm(Data, Cluster)
        For i = 1 To Cluster
            For j = 1 To DataSize
                OldCenter(i, j) = HcmCenter.center(i, j)   '产生HCM初始中心点
            Next
        Next
    ElseIf CreateIniCenter = CreateByRandomZadeh Then
        ReDim RndDegree(1 To Cluster, 1 To DataNumber) As Double
        Dim RndSum As Double
        For i = 1 To Cluster
            For j = 1 To DataNumber
                RndDegree(i, j) = Rnd           '创建随机的隶属度
            Next
        Next
        For j = 1 To DataNumber
            RndSum = 0
            For i = 1 To Cluster
                RndSum = RndSum + RndDegree(i, j)
            Next
            For i = 1 To Cluster
                RndDegree(i, j) = RndDegree(i, j) / RndSum   '隶属度矩阵每列之后必须为1
            Next
        Next
       
        For i = 1 To Cluster
            For j = 1 To DataSize
                Sum1 = 0: Sum2 = 0
                For k = 1 To DataNumber
                    Temp = Exp(Log(RndDegree(i, k)) * Exponent)  '其实就是RndDegree(i, k)^Exponent
                    Sum1 = Sum1 + Temp * Data(k, j)           '隶属度的平方乘以数值
                    Sum2 = Sum2 + Temp                        '隶属度的和
                Next
                OldCenter(i, j) = Sum1 / Sum2                 '得到聚类中心
            Next
        Next
    ElseIf CreateIniCenter = CreateByHand Then
        If IsMissing(CenterByHandle) Then
            Fcm.ErrMsg = "请提供初始聚类中心。."
            Exit Function
        ElseIf UBound(CenterByHandle, 1) <> Cluster Or UBound(CenterByHandle, 2) <> DataSize Then
            Fcm.ErrMsg = "手工提供的初始聚类中心维数有错误."
            Exit Function
        End If
        For i = 1 To Cluster
            For j = 1 To DataSize
                OldCenter(i, j) = CenterByHandle(i, j)
            Next
        Next
    End If

    
    Do
        Fcm.Iterations = Fcm.Iterations + 1
        For i = 1 To Cluster
            For j = 1 To DataNumber
                Sum1 = 0: Sum3 = 1
                For k = 1 To DataSize
                    Temp = Data(j, k) - OldCenter(i, k)
                    Sum1 = Sum1 + Temp * Temp             '计算第j点到第i个聚类中心的距离
                Next
                If Sum1 = 0 Then
                    Fcm.Degree(i, j) = 1                      '如果j点与第i个聚类中心重合,则完全属于该类
                Else
                    For k = 1 To Cluster
                        Sum2 = 0
                        If k <> i Then
                            For l = 1 To DataSize
                                Temp = Data(j, l) - OldCenter(k, l)
                                Sum2 = Sum2 + Temp * Temp  '计算第j点到其他聚类中心的距离
                            Next
                            Sum3 = Sum3 + Exp(Log(Sum1 / Sum2) * (2 / (Exponent - 1)))      '计算累加值,
                        End If
                    Next
                    Fcm.Degree(i, j) = 1 / Sum3    '计算新的隶属度
                End If
            Next
        Next
       
        For i = 1 To Cluster
            For j = 1 To DataSize
                Sum1 = 0: Sum2 = 0
                For k = 1 To DataNumber
                    Temp = Exp(Log(Fcm.Degree(i, k)) * Exponent)
                    Sum1 = Sum1 + Temp * Data(k, j)           '隶属度的平方乘以数值
                    Sum2 = Sum2 + Temp                        '隶属度的和
                Next
                Fcm.Center(i, j) = Sum1 / Sum2                    '得到新的聚类中心
            Next
        Next
       
        Temp = 0
        For i = 1 To Cluster
            For j = 1 To DataSize
                Temp = Temp + (OldCenter(i, j) - Fcm.Center(i, j)) ^ 2      ' 计算两次迭代之间的聚类中心的距离
                OldCenter(i, j) = Fcm.Center(i, j)                          ' 保留上一次的聚类中心
            Next
        Next

    Loop While Fcm.Iterations < Maxiterations And Temp > MinImprovement
   
    If AntiFuzzy = Max Then
        For i = 1 To DataNumber
            Temp = -1
            For k = 1 To Cluster
                If Temp < Fcm.Degree(k, i) Then    '得到列方向的最大值
                    Temp = Fcm.Degree(k, i)
                    Index = k
                End If
            Next
            Fcm.Class(i) = Index                  'Index记录了列方向最大隶属度的类
        Next
    ElseIf AntiFuzzy = Mean Then
         For i = 1 To DataNumber
             Temp = 0
             For j = 1 To Cluster
                Temp = Temp + Fcm.Degree(j, i) * j   '去隶书乘以对应的类别数之和
             Next
             Fcm.Class(i) = CInt(Temp)
      Next
    ElseIf AntiFuzzy = Middle Then
        For i = 1 To DataNumber
            Temp = 0
            For j = 1 To Cluster
                If Temp <= 0.5 And Temp + Fcm.Degree(j, i) >= 0.5 Then
                    Index = j
                    Exit For
                Else
                    Temp = Temp + Fcm.Degree(j, i)   '取面积的一半处
                End If
            Next
            Fcm.Class(i) = Index
        Next
    End If
    Fcm.TimeUse = GetTickCount - Fcm.TimeUse
    Exit Function
ErrHandle:
    Fcm.ErrMsg = Err.Description
    Fcm.TimeUse = GetTickCount - Fcm.TimeUse
End Function


'*************************************************************************************
'*    作    者 :    laviewpbt
'*    函 数 名 :    Hcm
'*    参    数 :    Data     -   待分类的样本,第一维的大小表示样本的个数,
'*                                第二维的大小表示样本的维数
'*                   Cluster  -   分类数
'*                   Maxiterations  - 最大的迭代次数
'                    MinImprovement - 最小的改进参数(两次迭代间聚类中心的距离)
'*    返回值 :      HcmInfo结构,记录了相关的参数
'*    功能描述 :    直接利用硬聚类方法把数据分类
'*    日    期 :    2004-10-24 20.10.56
'*    修 改 人 :    laviewpbt
'*    日    期 :    2006-11-7 20.11.23
'*    版    本 :    Version 2.3.1
'**************************************************************************************


Private Function Hcm(ByRef Data() As Double, ByVal Cluster As Byte, Optional Maxiterations As Long = 400, Optional MinImprovement As Double = 0.01) As HcmInfo
    If ArrayRange(Data) <> 2 Then
        Hcm.ErrMsg = "数据只能为二维数组"
        Exit Function
    End If
    Dim i As Long, j As Long, k As Long, l As Long, m As Long
    Dim DataNumber As Long, DataSize As Long
    Dim Temp As Double, DX As Double, DY As Double, SumValue() As Double, SumNumber() As Long
    Dim OldCenter() As Double, Distance As Double, Dist As Double, Index As Long
    On Error GoTo ErrHandle:
    Hcm.TimeUse = GetTickCount
    DataNumber = UBound(Data, 1): DataSize = UBound(Data, 2)
    ReDim Hcm.Center(1 To Cluster, 1 To DataSize) As Double
    ReDim Hcm.Class(1 To DataNumber) As Byte
    ReDim OldCenter(1 To Cluster, 1 To DataSize) As Double
    For i = 1 To Cluster
        For j = 1 To DataSize
            OldCenter(i, j) = Data(i * DataNumber / Cluster, j) '产生初始中心点
        Next
    Next
    Do
        Hcm.Iterations = Hcm.Iterations + 1
        ReDim SumNumber(Cluster) As Long
        ReDim SumValue(Cluster, DataSize) As Double
        For i = 1 To DataNumber
            Distance = 40000000000#
            For j = 1 To Cluster
                Dist = 0
                For k = 1 To DataSize
                    Temp = Data(i, k) - OldCenter(j, k)
                    Dist = Dist + Temp * Temp             '计算第j点到第i个聚类中心的距离
                Next
                If Distance > Dist Then
                    Distance = Dist
                    Index = j                         '把i点归于距离该点最近的中心点所在的类
                End If
            Next
            Hcm.Class(i) = Index
            For j = 1 To DataSize
                SumValue(Index, j) = SumValue(Index, j) + Data(i, j)
            Next
            SumNumber(Index) = SumNumber(Index) + 1
        Next
       
        For i = 1 To Cluster
            For k = 1 To DataSize
                If SumNumber(i) = 0 Then
                    Hcm.Center(i, k) = Data(Rnd * DataNumber, k)
                Else
                    Hcm.Center(i, k) = SumValue(i, k) / SumNumber(i)         '求新的中心
                End If
            Next
        Next
        Temp = 0
        For i = 1 To Cluster
            For j = 1 To DataSize
                Temp = Temp + (OldCenter(i, j) - Hcm.Center(i, j)) ^ 2      ' 计算两次迭代之间的聚类中心的距离
                OldCenter(i, j) = Hcm.Center(i, j)                          ' 保留上一次的聚类中心
            Next
        Next
    Loop While Hcm.Iterations < Maxiterations And Temp > MinImprovement
    Hcm.TimeUse = GetTickCount - Hcm.TimeUse
    Exit Function
ErrHandle:
    Hcm.ErrMsg = Err.Description
    Hcm.TimeUse = GetTickCount - Hcm.TimeUse
    End Function

 

'*************************************************************************************
'*    作    者 :    网络
'*    函 数 名 :    ArrayRange
'*    参    数 :    Data     -   待测试的数据
'*    返回值 :      返回数组的维数
'*    日    期 :    2006-7-10 13.20.40
'*    修 改 人 :    laviewpbt
'*    日    期 :    2006-11-7 10。10。45
'*    版    本 :    Version 1.2.1
'**************************************************************************************
Public Function ArrayRange(Data() As Double) As Integer
    Dim i As Integer, ret As Integer
    Dim ErrF As Boolean
    ErrF = False
    On Error GoTo ErrHandle
    For i = 1 To 60               'VB中数组最大为60
        ret = UBound(mArray, i)   '用UBound函数判断某一维的上界,如果大数组的实际维数时产生超出范围错误,此时我们通过Resume Next 来捕捉错这个错误
        ret = ret + 1
        If ErrF Then Exit For
    Next
    ArrayRange = ret
    Exit Function
ErrHandle:
    ret = i
    ErrF = True
    Resume Next
End Function

 

 

 

 测试情况:

1、简单数据的聚类

原始数据为:
1    2   
2    3   
1.5    2.5   
1.5    2   
5.1    1   
4.1    1   
5    3   
6    2   
聚类中心为:
1.500    2.374   
5.062    1.750   
隶属矩阵为:
1.00 1.00 1.00 1.00 0.00 0.03 0.02 0.00
0.00 0.00 0.00 0.00 1.00 0.97 0.98 1.00

这篇关于模糊聚类算法(FCM)和硬聚类算法(HCM)的VB6.0实现及其应用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/656908

相关文章

python实现svg图片转换为png和gif

《python实现svg图片转换为png和gif》这篇文章主要为大家详细介绍了python如何实现将svg图片格式转换为png和gif,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录python实现svg图片转换为png和gifpython实现图片格式之间的相互转换延展:基于Py

Python利用ElementTree实现快速解析XML文件

《Python利用ElementTree实现快速解析XML文件》ElementTree是Python标准库的一部分,而且是Python标准库中用于解析和操作XML数据的模块,下面小编就来和大家详细讲讲... 目录一、XML文件解析到底有多重要二、ElementTree快速入门1. 加载XML的两种方式2.

Java的栈与队列实现代码解析

《Java的栈与队列实现代码解析》栈是常见的线性数据结构,栈的特点是以先进后出的形式,后进先出,先进后出,分为栈底和栈顶,栈应用于内存的分配,表达式求值,存储临时的数据和方法的调用等,本文给大家介绍J... 目录栈的概念(Stack)栈的实现代码队列(Queue)模拟实现队列(双链表实现)循环队列(循环数组

C++如何通过Qt反射机制实现数据类序列化

《C++如何通过Qt反射机制实现数据类序列化》在C++工程中经常需要使用数据类,并对数据类进行存储、打印、调试等操作,所以本文就来聊聊C++如何通过Qt反射机制实现数据类序列化吧... 目录设计预期设计思路代码实现使用方法在 C++ 工程中经常需要使用数据类,并对数据类进行存储、打印、调试等操作。由于数据类

Python实现图片分割的多种方法总结

《Python实现图片分割的多种方法总结》图片分割是图像处理中的一个重要任务,它的目标是将图像划分为多个区域或者对象,本文为大家整理了一些常用的分割方法,大家可以根据需求自行选择... 目录1. 基于传统图像处理的分割方法(1) 使用固定阈值分割图片(2) 自适应阈值分割(3) 使用图像边缘检测分割(4)

Android实现在线预览office文档的示例详解

《Android实现在线预览office文档的示例详解》在移动端展示在线Office文档(如Word、Excel、PPT)是一项常见需求,这篇文章为大家重点介绍了两种方案的实现方法,希望对大家有一定的... 目录一、项目概述二、相关技术知识三、实现思路3.1 方案一:WebView + Office Onl

Java中的Lambda表达式及其应用小结

《Java中的Lambda表达式及其应用小结》Java中的Lambda表达式是一项极具创新性的特性,它使得Java代码更加简洁和高效,尤其是在集合操作和并行处理方面,:本文主要介绍Java中的La... 目录前言1. 什么是Lambda表达式?2. Lambda表达式的基本语法例子1:最简单的Lambda表

C# foreach 循环中获取索引的实现方式

《C#foreach循环中获取索引的实现方式》:本文主要介绍C#foreach循环中获取索引的实现方式,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录一、手动维护索引变量二、LINQ Select + 元组解构三、扩展方法封装索引四、使用 for 循环替代

Spring Security+JWT如何实现前后端分离权限控制

《SpringSecurity+JWT如何实现前后端分离权限控制》本篇将手把手教你用SpringSecurity+JWT搭建一套完整的登录认证与权限控制体系,具有很好的参考价值,希望对大家... 目录Spring Security+JWT实现前后端分离权限控制实战一、为什么要用 JWT?二、JWT 基本结构

Java实现优雅日期处理的方案详解

《Java实现优雅日期处理的方案详解》在我们的日常工作中,需要经常处理各种格式,各种类似的的日期或者时间,下面我们就来看看如何使用java处理这样的日期问题吧,感兴趣的小伙伴可以跟随小编一起学习一下... 目录前言一、日期的坑1.1 日期格式化陷阱1.2 时区转换二、优雅方案的进阶之路2.1 线程安全重构2