【动态规划】【字符串】【行程码】1531. 压缩字符串

2024-01-29 10:20

本文主要是介绍【动态规划】【字符串】【行程码】1531. 压缩字符串,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

作者推荐

视频算法专题

本文涉及知识点

动态规划汇总

LeetCode 1531. 压缩字符串 II

行程长度编码 是一种常用的字符串压缩方法,它将连续的相同字符(重复 2 次或更多次)替换为字符和表示字符计数的数字(行程长度)。例如,用此方法压缩字符串 “aabccc” ,将 “aa” 替换为 “a2” ,“ccc” 替换为` “c3” 。因此压缩后的字符串变为 “a2bc3” 。
注意,本问题中,压缩时没有在单个字符后附加计数 ‘1’ 。
给你一个字符串 s 和一个整数 k 。你需要从字符串 s 中删除最多 k 个字符,以使 s 的行程长度编码长度最小。
请你返回删除最多 k 个字符后,s 行程长度编码的最小长度 。
示例 1:
输入:s = “aaabcccd”, k = 2
输出:4
解释:在不删除任何内容的情况下,压缩后的字符串是 “a3bc3d” ,长度为 6 。最优的方案是删除 ‘b’ 和 ‘d’,这样一来,压缩后的字符串为 “a3c3” ,长度是 4 。
示例 2:
输入:s = “aabbaa”, k = 2
输出:2
解释:如果删去两个 ‘b’ 字符,那么压缩后的字符串是长度为 2 的 “a4” 。
示例 3:
输入:s = “aaaaaaaaaaa”, k = 0
输出:3
解释:由于 k 等于 0 ,不能删去任何字符。压缩后的字符串是 “a11” ,长度为 3 。
提示:
1 <= s.length <= 100
0 <= k <= s.length
s 仅包含小写英文字母

动态规划

预处理

将s转成arr,每个元素是{字符,长度}。
比如:aabbaa变成{{‘a’,2},{'b",2},{‘a’,2}}
长度0,表示0个字符。长度1,表示1个字符。长度2,表示2到9.长度3,表示10到99,长度4,表示100及以上。

动态规划的状态表示

pre[j] 表示处理完arr[0,i)后, 用去j个字符的最短行程码。
dp[j] 表示处理完arr[0,i]后, 用去j个字符的最短行程码。
pre2[ch][j][m] 表示处理完arr[0,i)后,,以ch+'a’结尾,用去j个字符,最后有m个ch的最短行程码。
dp2表示处理完arr[0,i]…

动态规划的转移方程

arr[i]没有和前面的元素合并:
枚举j,枚举减少长度:0、1、2、3、4
arr[j]和前面的合并:
枚举j,m 再枚举减少长度:0、1、2、3 、4
合并示例:aa d d ‾ \underline{dd} ddaa 删除dd后,就是4个aa了。

动态规划的初始状态

pre[0]=0,其它100。
pre2全部100。

动态规划的填表顺序

i从小到大。

动态规划的返回值

pre.back().back()

代码

核心代码

class Solution {
public:int getLengthOfOptimalCompression(string s, int k) {const int lenArr = s.length();vector<pair<char, int>> arr;for (int left = 0, i = 0; i <= s.length(); i++){if ((i >= s.length()) || (s[left] != s[i])){arr.emplace_back(s[left], i - left);left = i;}}vector<int> vLen = { 0,1,2,10,100 };auto GetCodeLen = [&vLen](int len){int i = vLen.size() - 1;for (; (i >= 0) && (len < vLen[i]); i--);return i;};auto MaxLen = [&vLen](int len){return vLen[len + 1] - 1;};vector<int> pre(lenArr + 1, 100);pre[0] = 0;vector<vector<vector<int>>> dp3(26, vector<vector<int>>(lenArr+1, vector<int>(lenArr + 1, 100)));for (const auto& [ch, cnt] : arr){vector<int> dp(lenArr + 1, 100);auto& dp2 = dp3[ch - 'a'];auto pre2 = dp2;auto Update = [&lenArr,&dp,&dp2](int j, int iCodeLen,const char& chEnd,int iEndLen){if (j > lenArr){return;}dp[j] = min(dp[j], iCodeLen);if (iEndLen <= lenArr){dp2[j][iEndLen] = min(dp2[j][iEndLen], iCodeLen);}};			//处理没合并for (int j = 0; j <= lenArr; j++){	const int curCodeLen = GetCodeLen(cnt);Update(j + cnt, pre[j] + curCodeLen,ch,cnt);for (int curCodeLen2 = curCodeLen - 1; curCodeLen2 >= 0; curCodeLen2--){//处理 行程妈缩短1,2...Update(j + MaxLen(curCodeLen2), pre[j] + curCodeLen2,ch, MaxLen(curCodeLen2));}}for (int j = 0; j <= lenArr; j++){for (int m = 0; m <= j; m++){const int curCodeLen = GetCodeLen(cnt+m );Update(j + cnt, pre2[j][m] - GetCodeLen(m) + GetCodeLen(m + cnt), ch, m + cnt);for (int curCodeLen2 = curCodeLen - 1; curCodeLen2 >= 0; curCodeLen2--){//处理 行程妈缩短1,2...Update(j -m + MaxLen(curCodeLen2), pre2[j][m] - GetCodeLen(m) + curCodeLen2,ch, MaxLen(curCodeLen2));}}}pre.swap(dp);	}return *std::min_element(pre.begin() + pre.size() - k-1, pre.end());}
};

测试用例

template<class T>
void Assert(const T& t1, const T& t2)
{assert(t1 == t2);
}template<class T>
void Assert(const vector<T>& v1, const vector<T>& v2)
{if (v1.size() != v2.size()){assert(false);return;}for (int i = 0; i < v1.size(); i++){Assert(v1[i], v2[i]);}}int main()
{	string s;int k;{Solution sln;s = "aaa", k = 2;auto res = sln.getLengthOfOptimalCompression(s, k);Assert(1, res);}{Solution sln;s = "aaab", k = 2;auto res = sln.getLengthOfOptimalCompression(s, k);Assert(2, res);}{Solution sln;s = "aaabcccd", k = 2;auto res = sln.getLengthOfOptimalCompression(s, k);Assert(4, res);}{Solution sln;s = "aabbaa", k = 2;auto res = sln.getLengthOfOptimalCompression(s, k);Assert(2, res);}{Solution sln;s = "aaaaaaaaaaa", k = 0;auto res = sln.getLengthOfOptimalCompression(s, k);Assert(3, res);}{Solution sln;s = "spnskpulpsiqagreoajsltdrdlnpsdqapmsdlnlirasgfijafeoqjnddpaifsqpghshclqummgootsmkcgneofrkboirkplqijoi", k = 25;auto res = sln.getLengthOfOptimalCompression(s, k);Assert(3, res);}}

动态规划优化

前一个解法的空间复杂度在过与不过的边缘。

动态规划的状态表示

dp[i][j] 表示处理了arr[0,i),选择了j个字符的最短行程码。

动态规划的转移方程

分两种情况: 和前面的项目合并,和前面的项不合并。细节同上。

动态规划的初始值

dp[0][0]=0,其它100。

动态规划的填表顺序

i从小到大,j从小到大。

动态规划的返回值

dp.back的后k+1个元素的最小值。

优化后的代码

class Solution {
public:int getLengthOfOptimalCompression(string s, int k) {const int lenArr = s.length();vector<pair<char, int>> arr;for (int left = 0, i = 0; i <= s.length(); i++){if ((i >= s.length()) || (s[left] != s[i])){arr.emplace_back(s[left], i - left);left = i;}}vector<int> vLen = { 0,1,2,10,100 };auto GetCodeLen = [&vLen](int len){int i = vLen.size() - 1;for (; (i >= 0) && (len < vLen[i]); i--);return i;};auto MaxLen = [&vLen](int len){return vLen[len + 1] - 1;};vector<vector<int>> dp(arr.size() + 1, vector<int>(lenArr + 1, 100));dp[0][0] = 0;int i = -1;for (const auto& [ch, cnt] : arr){i++;auto& pre = dp[i];auto& cur = dp[i + 1];auto Update = [&lenArr, &cur](int j, int iCodeLen){if (j > lenArr){return;}cur[j] = min(cur[j], iCodeLen);};//处理没合并for (int j = 0; j <= lenArr; j++){const int curCodeLen = GetCodeLen(cnt);Update(j + cnt, pre[j] + curCodeLen);for (int curCodeLen2 = curCodeLen - 1; curCodeLen2 >= 0; curCodeLen2--){//处理 行程妈缩短1,2...Update(j + MaxLen(curCodeLen2), pre[j] + curCodeLen2);}}int cnt2 = 0;for (int m = i ; m >= 0; m--){if (arr[m].first != ch){continue;}cnt2 += arr[m].second;//合并后的字符数		const int curCodeLen = GetCodeLen(cnt2);for (int j = 0; j <= lenArr; j++){Update(j + cnt2, dp[m][j] + curCodeLen);for (int curCodeLen2 = curCodeLen - 1; curCodeLen2 >= 0; curCodeLen2--){//处理 行程妈缩短1,2...Update(j + MaxLen(curCodeLen2), dp[m][j] + curCodeLen2);}}}			}return *std::min_element(dp.back().begin() + dp.back().size() - k - 1, dp.back().end());}
};

动态规划三

arr数组,少许提升性能,但增加了复杂度,不采用。

动态规划的状态

dp[i][j]表示 从s[0,i)中删除j个字符 最短的行程码。

动态规划的转移方程

令x = dp[i+1][j]
情况一:删除s[i+1]
那x等于dp[i][j-1] 公式一
情况二:不删除,且可能和前面的字符结合后,删除。
不市一般性,令s[i]=‘a’,且它的前面只有三个’a’,小标分别为i1,i2,i3。
情况a:
s[i]没有和其它’a’结合,则x= dp[i][j]+GetCodeLen (1)。 公式二
情况b:
s[i]和s[i3]结合,s(i3,i)之间非’a’的数量为diff,全部删除。
b1: i和i3 都没删除。 x = dp[i3][j-diff] + GetCodeLen(2) → \rightarrow dp[i-diff-1][j-diff] + GetCodeLen(2) 公式三
b2: i3删除。x = dp[i3][j-diff-1] + GetCodeLen(1) → \rightarrow dp[i-diff-1][j-diff-1] + GetCodeLen(1) 就是公式二和公式一结合。
情况c:
s[i]和s[i2] s[i3]结合: s(i2,i)之间非’a’的数量为diff2,全部删除。
c1,不删除’a’。 dp[i2][j-diff2] + GetCodeLen(3) ** 公式四**
c2,删除一个’a’ dp[i2][j-diff2-1] + GetCodeLen(2) → \rightarrow dp[i-diff2-2][j-diff2-1]+GetCodeLen(2) 就是公式三和公式的结合,不需要枚举。
c3 删除两个’a’。dp[i-diff2-2][j-diff2-2] + GetCodeLen(1) 就是公式二和公式一结合,不用枚举。
总结:
无论多少个字符结合,全删除就是公式一。
保留一个就是公式二。
保留三个就是公式三。

m个字符结合,只需要枚举m个字符,mm个字符(mm < m )枚举mm个字符结合的时候考虑。

可以这样理解:
m个字符合并后,删除m-mm个,保留mm个。 保留任意mm个都一样,那保留后mm个。所以只需要枚举:保留后mm个。

动态规划的初始值

dp[0][0] = 0,其它100。

动态规划的填表顺序

i从小到大。

动态规划的返回值

dp.back()的最小值。

代码

class Solution {
public:int getLengthOfOptimalCompression(string s, int k) {const int n = s.length();		vector<int> vLen = { 0,1,2,10,100 };auto GetCodeLen = [&vLen](int len){int i = vLen.size() - 1;for (; (i >= 0) && (len < vLen[i]); i--);return i;};vector<vector<int>> dp(n + 1, vector<int>(k + 1, 100));dp[0][0] = 0;for (int i = 0; i < n; i++){//处理删除s[i]for (int j1 = 1; j1 <= min(i+1,k); j1++){dp[i+1][j1] = dp[i][j1-1];}//处理不删除s[i]for (int same = 0, diff = 0, preLen = i;preLen>=0; preLen--){if (s[preLen] == s[i]){same++;for (int j1 = diff; j1 <= min(i + 1, k); j1++){dp[i + 1][j1] = min(dp[i + 1][j1], dp[i + 1 - same - diff][j1 - diff] + GetCodeLen(same));}					}else{diff++;}}}		return *std::min_element(dp.back().begin() , dp.back().end());}
};

2023年2月 第一版

class Solution {
public:
int getLengthOfOptimalCompression(const string s, const int k) {
int pre[100 + 1][27][101];
memset(pre, 101, sizeof(pre));
pre[0][26][1] = 0;
for (const auto& ch : s)
{
int dp[100 + 1][27][101];
memset(dp, 101, sizeof(dp));
for (int iK = 0; iK <= k; iK++)
{
for (int j = 0; j < 27; j++)
{
for (int iNew = 0; iNew < 101; iNew++)
{
const int& iLen = pre[iK][j][iNew];
if (iLen > 100)
{
continue;
}
if (iK < k)
{//删除
dp[iK + 1][j][iNew] = min(dp[iK + 1][j][iNew], iLen);
}
if (j + ‘a’ != ch)
{
dp[iK][ch - ‘a’][1] = min(dp[iK][ch - ‘a’][1], iLen + 1);
}
else
{
const int iNewNum = min(100, iNew + 1);
dp[iK][ch - ‘a’][iNewNum] = min(dp[iK][ch - ‘a’][iNewNum], iLen + ((1 == iNew) || (9 == iNew) || (99 == iNew)));
}
}
}
}
memcpy(pre,dp, sizeof(pre));
}
int iMin = INT_MAX;
if (100 == s.length())
{
const char chMin = *std::min_element(s.begin(), s.end());
const char chMax = *std::max_element(s.begin(), s.end());
if (chMin == chMax)
{
iMin = 4;
}
}
for (int iK = 0; iK <= k; iK++)
{
for (int j = 0; j < 27; j++)
{
for (int iNew = 0; iNew < 101; iNew++)
{
if (pre[iK][j][iNew] < iMin)
{
iMin = pre[iK][j][iNew];
}
}
}
}
return iMin;
}
};

2023年2月 第二版

class Solution {
public:
int getLengthOfOptimalCompression(const string s, const int k) {
if (100 == s.length())
{
const char chMin = *std::min_element(s.begin(), s.end());
const char chMax = *std::max_element(s.begin(), s.end());
if (chMin == chMax)
{
const int iRemain = s.length() - k;
if (iRemain >= 100)
{
return 4;
}
if (iRemain >= 10)
{
return 3;
}
if (iRemain >= 2 )
{
return 2;
}
return iRemain;
}
}
int pre[100 + 1][27][11];
memset(pre, 101, sizeof(pre));
pre[0][26][1] = 0;
for (const auto& ch : s)
{
int dp[100 + 1][27][11];
memset(dp, 101, sizeof(dp));
for (int iK = 0; iK <= k; iK++)
{
for (int j = 0; j < 27; j++)
{
for (int iNew = 0; iNew < 11; iNew++)
{
const int& iLen = pre[iK][j][iNew];
if (iLen > 100)
{
continue;
}
if (iK < k)
{//删除
dp[iK + 1][j][iNew] = min(dp[iK + 1][j][iNew], iLen);
}
if (j + ‘a’ != ch)
{
dp[iK][ch - ‘a’][1] = min(dp[iK][ch - ‘a’][1], iLen + 1);
}
else
{
const int iNewNum = min(10, iNew + 1);
dp[iK][ch - ‘a’][iNewNum] = min(dp[iK][ch - ‘a’][iNewNum], iLen + ((1 == iNew) || (9 == iNew) || (99 == iNew)));
}
}
}
}
memcpy(pre, dp, sizeof(pre));
}
int iMin = INT_MAX;
for (int iK = 0; iK <= k; iK++)
{
for (int j = 0; j < 27; j++)
{
for (int iNew = 0; iNew < 11; iNew++)
{
if (pre[iK][j][iNew] < iMin)
{
iMin = pre[iK][j][iNew];
}
}
}
}
return iMin;
}
};

2023年2月版

class Solution {
public:
int getLengthOfOptimalCompression(const string s, const int k) {
if (100 == s.length())
{
const char chMin = *std::min_element(s.begin(), s.end());
const char chMax = *std::max_element(s.begin(), s.end());
if (chMin == chMax)
{
const int iRemain = s.length() - k;
if (iRemain >= 100)
{
return 4;
}
if (iRemain >= 10)
{
return 3;
}
if (iRemain >= 2 )
{
return 2;
}
return iRemain;
}
}
int pre[100 + 1][27][11];
memset(pre, 101, sizeof(pre));
pre[0][26][1] = 0;
for (const auto& ch : s)
{
int dp[100 + 1][27][11];
memset(dp, 101, sizeof(dp));
for (int iK = 0; iK <= k; iK++)
{
for (int j = 0; j < 27; j++)
{
for (int iNew = 1; iNew < 11; iNew++)
{
const int& iLen = pre[iK][j][iNew];
if (iLen > 100)
{
continue;
}
if (iK < k)
{//删除
dp[iK + 1][j][iNew] = min(dp[iK + 1][j][iNew], iLen);
}
if (j + ‘a’ != ch)
{
dp[iK][ch - ‘a’][1] = min(dp[iK][ch - ‘a’][1], iLen + 1);
}
else
{
const int iNewNum = min(10, iNew + 1);
dp[iK][ch - ‘a’][iNewNum] = min(dp[iK][ch - ‘a’][iNewNum], iLen + ((1 == iNew) || (9 == iNew) || (99 == iNew)));
}
}
}
}
memcpy(pre, dp, sizeof(pre));
}
int iMin = INT_MAX;
for (int iK = 0; iK <= k; iK++)
{
for (int j = 0; j < 27; j++)
{
for (int iNew = 1; iNew < 11; iNew++)
{
if (pre[iK][j][iNew] < iMin)
{
iMin = pre[iK][j][iNew];
}
}
}
}
return iMin;
}
};

扩展阅读

视频课程

有效学习:明确的目标 及时的反馈 拉伸区(难度合适),可以先学简单的课程,请移步CSDN学院,听白银讲师(也就是鄙人)的讲解。
https://edu.csdn.net/course/detail/38771

如何你想快

速形成战斗了,为老板分忧,请学习C#入职培训、C++入职培训等课程
https://edu.csdn.net/lecturer/6176

相关下载

想高屋建瓴的学习算法,请下载《喜缺全书算法册》doc版
https://download.csdn.net/download/he_zhidan/88348653

我想对大家说的话
闻缺陷则喜是一个美好的愿望,早发现问题,早修改问题,给老板节约钱。
子墨子言之:事无终始,无务多业。也就是我们常说的专业的人做专业的事。
如果程序是一条龙,那算法就是他的是睛

测试环境

操作系统:win7 开发环境: VS2019 C++17
或者 操作系统:win10 开发环境: VS2022 C++17
如无特殊说明,本算法用**C++**实现。

这篇关于【动态规划】【字符串】【行程码】1531. 压缩字符串的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/656603

相关文章

JAVA中整型数组、字符串数组、整型数和字符串 的创建与转换的方法

《JAVA中整型数组、字符串数组、整型数和字符串的创建与转换的方法》本文介绍了Java中字符串、字符数组和整型数组的创建方法,以及它们之间的转换方法,还详细讲解了字符串中的一些常用方法,如index... 目录一、字符串、字符数组和整型数组的创建1、字符串的创建方法1.1 通过引用字符数组来创建字符串1.2

C#中字符串分割的多种方式

《C#中字符串分割的多种方式》在C#编程语言中,字符串处理是日常开发中不可或缺的一部分,字符串分割是处理文本数据时常用的操作,它允许我们将一个长字符串分解成多个子字符串,本文给大家介绍了C#中字符串分... 目录1. 使用 string.Split2. 使用正则表达式 (Regex.Split)3. 使用

如何用Python绘制简易动态圣诞树

《如何用Python绘制简易动态圣诞树》这篇文章主要给大家介绍了关于如何用Python绘制简易动态圣诞树,文中讲解了如何通过编写代码来实现特定的效果,包括代码的编写技巧和效果的展示,需要的朋友可以参考... 目录代码:效果:总结 代码:import randomimport timefrom math

Java中JSON字符串反序列化(动态泛型)

《Java中JSON字符串反序列化(动态泛型)》文章讨论了在定时任务中使用反射调用目标对象时处理动态参数的问题,通过将方法参数存储为JSON字符串并进行反序列化,可以实现动态调用,然而,这种方式容易导... 需求:定时任务扫描,反射调用目标对象,但是,方法的传参不是固定的。方案一:将方法参数存成jsON字

Qt实现文件的压缩和解压缩操作

《Qt实现文件的压缩和解压缩操作》这篇文章主要为大家详细介绍了如何使用Qt库中的QZipReader和QZipWriter实现文件的压缩和解压缩功能,文中的示例代码简洁易懂,需要的可以参考一下... 目录一、实现方式二、具体步骤1、在.pro文件中添加模块gui-private2、通过QObject方式创建

.NET利用C#字节流动态操作Excel文件

《.NET利用C#字节流动态操作Excel文件》在.NET开发中,通过字节流动态操作Excel文件提供了一种高效且灵活的方式处理数据,本文将演示如何在.NET平台使用C#通过字节流创建,读取,编辑及保... 目录用C#创建并保存Excel工作簿为字节流用C#通过字节流直接读取Excel文件数据用C#通过字节

hdu1043(八数码问题,广搜 + hash(实现状态压缩) )

利用康拓展开将一个排列映射成一个自然数,然后就变成了普通的广搜题。 #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#inclu

第10章 中断和动态时钟显示

第10章 中断和动态时钟显示 从本章开始,按照书籍的划分,第10章开始就进入保护模式(Protected Mode)部分了,感觉从这里开始难度突然就增加了。 书中介绍了为什么有中断(Interrupt)的设计,中断的几种方式:外部硬件中断、内部中断和软中断。通过中断做了一个会走的时钟和屏幕上输入字符的程序。 我自己理解中断的一些作用: 为了更好的利用处理器的性能。协同快速和慢速设备一起工作

hdu1565(状态压缩)

本人第一道ac的状态压缩dp,这题的数据非常水,很容易过 题意:在n*n的矩阵中选数字使得不存在任意两个数字相邻,求最大值 解题思路: 一、因为在1<<20中有很多状态是无效的,所以第一步是选择有效状态,存到cnt[]数组中 二、dp[i][j]表示到第i行的状态cnt[j]所能得到的最大值,状态转移方程dp[i][j] = max(dp[i][j],dp[i-1][k]) ,其中k满足c

动态规划---打家劫舍

题目: 你是一个专业的小偷,计划偷窃沿街的房屋。每间房内都藏有一定的现金,影响你偷窃的唯一制约因素就是相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警。 给定一个代表每个房屋存放金额的非负整数数组,计算你 不触动警报装置的情况下 ,一夜之内能够偷窃到的最高金额。 思路: 动态规划五部曲: 1.确定dp数组及含义 dp数组是一维数组,dp[i]代表