【动态规划】【字符串】【行程码】1531. 压缩字符串

2024-01-29 10:20

本文主要是介绍【动态规划】【字符串】【行程码】1531. 压缩字符串,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

作者推荐

视频算法专题

本文涉及知识点

动态规划汇总

LeetCode 1531. 压缩字符串 II

行程长度编码 是一种常用的字符串压缩方法,它将连续的相同字符(重复 2 次或更多次)替换为字符和表示字符计数的数字(行程长度)。例如,用此方法压缩字符串 “aabccc” ,将 “aa” 替换为 “a2” ,“ccc” 替换为` “c3” 。因此压缩后的字符串变为 “a2bc3” 。
注意,本问题中,压缩时没有在单个字符后附加计数 ‘1’ 。
给你一个字符串 s 和一个整数 k 。你需要从字符串 s 中删除最多 k 个字符,以使 s 的行程长度编码长度最小。
请你返回删除最多 k 个字符后,s 行程长度编码的最小长度 。
示例 1:
输入:s = “aaabcccd”, k = 2
输出:4
解释:在不删除任何内容的情况下,压缩后的字符串是 “a3bc3d” ,长度为 6 。最优的方案是删除 ‘b’ 和 ‘d’,这样一来,压缩后的字符串为 “a3c3” ,长度是 4 。
示例 2:
输入:s = “aabbaa”, k = 2
输出:2
解释:如果删去两个 ‘b’ 字符,那么压缩后的字符串是长度为 2 的 “a4” 。
示例 3:
输入:s = “aaaaaaaaaaa”, k = 0
输出:3
解释:由于 k 等于 0 ,不能删去任何字符。压缩后的字符串是 “a11” ,长度为 3 。
提示:
1 <= s.length <= 100
0 <= k <= s.length
s 仅包含小写英文字母

动态规划

预处理

将s转成arr,每个元素是{字符,长度}。
比如:aabbaa变成{{‘a’,2},{'b",2},{‘a’,2}}
长度0,表示0个字符。长度1,表示1个字符。长度2,表示2到9.长度3,表示10到99,长度4,表示100及以上。

动态规划的状态表示

pre[j] 表示处理完arr[0,i)后, 用去j个字符的最短行程码。
dp[j] 表示处理完arr[0,i]后, 用去j个字符的最短行程码。
pre2[ch][j][m] 表示处理完arr[0,i)后,,以ch+'a’结尾,用去j个字符,最后有m个ch的最短行程码。
dp2表示处理完arr[0,i]…

动态规划的转移方程

arr[i]没有和前面的元素合并:
枚举j,枚举减少长度:0、1、2、3、4
arr[j]和前面的合并:
枚举j,m 再枚举减少长度:0、1、2、3 、4
合并示例:aa d d ‾ \underline{dd} ddaa 删除dd后,就是4个aa了。

动态规划的初始状态

pre[0]=0,其它100。
pre2全部100。

动态规划的填表顺序

i从小到大。

动态规划的返回值

pre.back().back()

代码

核心代码

class Solution {
public:int getLengthOfOptimalCompression(string s, int k) {const int lenArr = s.length();vector<pair<char, int>> arr;for (int left = 0, i = 0; i <= s.length(); i++){if ((i >= s.length()) || (s[left] != s[i])){arr.emplace_back(s[left], i - left);left = i;}}vector<int> vLen = { 0,1,2,10,100 };auto GetCodeLen = [&vLen](int len){int i = vLen.size() - 1;for (; (i >= 0) && (len < vLen[i]); i--);return i;};auto MaxLen = [&vLen](int len){return vLen[len + 1] - 1;};vector<int> pre(lenArr + 1, 100);pre[0] = 0;vector<vector<vector<int>>> dp3(26, vector<vector<int>>(lenArr+1, vector<int>(lenArr + 1, 100)));for (const auto& [ch, cnt] : arr){vector<int> dp(lenArr + 1, 100);auto& dp2 = dp3[ch - 'a'];auto pre2 = dp2;auto Update = [&lenArr,&dp,&dp2](int j, int iCodeLen,const char& chEnd,int iEndLen){if (j > lenArr){return;}dp[j] = min(dp[j], iCodeLen);if (iEndLen <= lenArr){dp2[j][iEndLen] = min(dp2[j][iEndLen], iCodeLen);}};			//处理没合并for (int j = 0; j <= lenArr; j++){	const int curCodeLen = GetCodeLen(cnt);Update(j + cnt, pre[j] + curCodeLen,ch,cnt);for (int curCodeLen2 = curCodeLen - 1; curCodeLen2 >= 0; curCodeLen2--){//处理 行程妈缩短1,2...Update(j + MaxLen(curCodeLen2), pre[j] + curCodeLen2,ch, MaxLen(curCodeLen2));}}for (int j = 0; j <= lenArr; j++){for (int m = 0; m <= j; m++){const int curCodeLen = GetCodeLen(cnt+m );Update(j + cnt, pre2[j][m] - GetCodeLen(m) + GetCodeLen(m + cnt), ch, m + cnt);for (int curCodeLen2 = curCodeLen - 1; curCodeLen2 >= 0; curCodeLen2--){//处理 行程妈缩短1,2...Update(j -m + MaxLen(curCodeLen2), pre2[j][m] - GetCodeLen(m) + curCodeLen2,ch, MaxLen(curCodeLen2));}}}pre.swap(dp);	}return *std::min_element(pre.begin() + pre.size() - k-1, pre.end());}
};

测试用例

template<class T>
void Assert(const T& t1, const T& t2)
{assert(t1 == t2);
}template<class T>
void Assert(const vector<T>& v1, const vector<T>& v2)
{if (v1.size() != v2.size()){assert(false);return;}for (int i = 0; i < v1.size(); i++){Assert(v1[i], v2[i]);}}int main()
{	string s;int k;{Solution sln;s = "aaa", k = 2;auto res = sln.getLengthOfOptimalCompression(s, k);Assert(1, res);}{Solution sln;s = "aaab", k = 2;auto res = sln.getLengthOfOptimalCompression(s, k);Assert(2, res);}{Solution sln;s = "aaabcccd", k = 2;auto res = sln.getLengthOfOptimalCompression(s, k);Assert(4, res);}{Solution sln;s = "aabbaa", k = 2;auto res = sln.getLengthOfOptimalCompression(s, k);Assert(2, res);}{Solution sln;s = "aaaaaaaaaaa", k = 0;auto res = sln.getLengthOfOptimalCompression(s, k);Assert(3, res);}{Solution sln;s = "spnskpulpsiqagreoajsltdrdlnpsdqapmsdlnlirasgfijafeoqjnddpaifsqpghshclqummgootsmkcgneofrkboirkplqijoi", k = 25;auto res = sln.getLengthOfOptimalCompression(s, k);Assert(3, res);}}

动态规划优化

前一个解法的空间复杂度在过与不过的边缘。

动态规划的状态表示

dp[i][j] 表示处理了arr[0,i),选择了j个字符的最短行程码。

动态规划的转移方程

分两种情况: 和前面的项目合并,和前面的项不合并。细节同上。

动态规划的初始值

dp[0][0]=0,其它100。

动态规划的填表顺序

i从小到大,j从小到大。

动态规划的返回值

dp.back的后k+1个元素的最小值。

优化后的代码

class Solution {
public:int getLengthOfOptimalCompression(string s, int k) {const int lenArr = s.length();vector<pair<char, int>> arr;for (int left = 0, i = 0; i <= s.length(); i++){if ((i >= s.length()) || (s[left] != s[i])){arr.emplace_back(s[left], i - left);left = i;}}vector<int> vLen = { 0,1,2,10,100 };auto GetCodeLen = [&vLen](int len){int i = vLen.size() - 1;for (; (i >= 0) && (len < vLen[i]); i--);return i;};auto MaxLen = [&vLen](int len){return vLen[len + 1] - 1;};vector<vector<int>> dp(arr.size() + 1, vector<int>(lenArr + 1, 100));dp[0][0] = 0;int i = -1;for (const auto& [ch, cnt] : arr){i++;auto& pre = dp[i];auto& cur = dp[i + 1];auto Update = [&lenArr, &cur](int j, int iCodeLen){if (j > lenArr){return;}cur[j] = min(cur[j], iCodeLen);};//处理没合并for (int j = 0; j <= lenArr; j++){const int curCodeLen = GetCodeLen(cnt);Update(j + cnt, pre[j] + curCodeLen);for (int curCodeLen2 = curCodeLen - 1; curCodeLen2 >= 0; curCodeLen2--){//处理 行程妈缩短1,2...Update(j + MaxLen(curCodeLen2), pre[j] + curCodeLen2);}}int cnt2 = 0;for (int m = i ; m >= 0; m--){if (arr[m].first != ch){continue;}cnt2 += arr[m].second;//合并后的字符数		const int curCodeLen = GetCodeLen(cnt2);for (int j = 0; j <= lenArr; j++){Update(j + cnt2, dp[m][j] + curCodeLen);for (int curCodeLen2 = curCodeLen - 1; curCodeLen2 >= 0; curCodeLen2--){//处理 行程妈缩短1,2...Update(j + MaxLen(curCodeLen2), dp[m][j] + curCodeLen2);}}}			}return *std::min_element(dp.back().begin() + dp.back().size() - k - 1, dp.back().end());}
};

动态规划三

arr数组,少许提升性能,但增加了复杂度,不采用。

动态规划的状态

dp[i][j]表示 从s[0,i)中删除j个字符 最短的行程码。

动态规划的转移方程

令x = dp[i+1][j]
情况一:删除s[i+1]
那x等于dp[i][j-1] 公式一
情况二:不删除,且可能和前面的字符结合后,删除。
不市一般性,令s[i]=‘a’,且它的前面只有三个’a’,小标分别为i1,i2,i3。
情况a:
s[i]没有和其它’a’结合,则x= dp[i][j]+GetCodeLen (1)。 公式二
情况b:
s[i]和s[i3]结合,s(i3,i)之间非’a’的数量为diff,全部删除。
b1: i和i3 都没删除。 x = dp[i3][j-diff] + GetCodeLen(2) → \rightarrow dp[i-diff-1][j-diff] + GetCodeLen(2) 公式三
b2: i3删除。x = dp[i3][j-diff-1] + GetCodeLen(1) → \rightarrow dp[i-diff-1][j-diff-1] + GetCodeLen(1) 就是公式二和公式一结合。
情况c:
s[i]和s[i2] s[i3]结合: s(i2,i)之间非’a’的数量为diff2,全部删除。
c1,不删除’a’。 dp[i2][j-diff2] + GetCodeLen(3) ** 公式四**
c2,删除一个’a’ dp[i2][j-diff2-1] + GetCodeLen(2) → \rightarrow dp[i-diff2-2][j-diff2-1]+GetCodeLen(2) 就是公式三和公式的结合,不需要枚举。
c3 删除两个’a’。dp[i-diff2-2][j-diff2-2] + GetCodeLen(1) 就是公式二和公式一结合,不用枚举。
总结:
无论多少个字符结合,全删除就是公式一。
保留一个就是公式二。
保留三个就是公式三。

m个字符结合,只需要枚举m个字符,mm个字符(mm < m )枚举mm个字符结合的时候考虑。

可以这样理解:
m个字符合并后,删除m-mm个,保留mm个。 保留任意mm个都一样,那保留后mm个。所以只需要枚举:保留后mm个。

动态规划的初始值

dp[0][0] = 0,其它100。

动态规划的填表顺序

i从小到大。

动态规划的返回值

dp.back()的最小值。

代码

class Solution {
public:int getLengthOfOptimalCompression(string s, int k) {const int n = s.length();		vector<int> vLen = { 0,1,2,10,100 };auto GetCodeLen = [&vLen](int len){int i = vLen.size() - 1;for (; (i >= 0) && (len < vLen[i]); i--);return i;};vector<vector<int>> dp(n + 1, vector<int>(k + 1, 100));dp[0][0] = 0;for (int i = 0; i < n; i++){//处理删除s[i]for (int j1 = 1; j1 <= min(i+1,k); j1++){dp[i+1][j1] = dp[i][j1-1];}//处理不删除s[i]for (int same = 0, diff = 0, preLen = i;preLen>=0; preLen--){if (s[preLen] == s[i]){same++;for (int j1 = diff; j1 <= min(i + 1, k); j1++){dp[i + 1][j1] = min(dp[i + 1][j1], dp[i + 1 - same - diff][j1 - diff] + GetCodeLen(same));}					}else{diff++;}}}		return *std::min_element(dp.back().begin() , dp.back().end());}
};

2023年2月 第一版

class Solution {
public:
int getLengthOfOptimalCompression(const string s, const int k) {
int pre[100 + 1][27][101];
memset(pre, 101, sizeof(pre));
pre[0][26][1] = 0;
for (const auto& ch : s)
{
int dp[100 + 1][27][101];
memset(dp, 101, sizeof(dp));
for (int iK = 0; iK <= k; iK++)
{
for (int j = 0; j < 27; j++)
{
for (int iNew = 0; iNew < 101; iNew++)
{
const int& iLen = pre[iK][j][iNew];
if (iLen > 100)
{
continue;
}
if (iK < k)
{//删除
dp[iK + 1][j][iNew] = min(dp[iK + 1][j][iNew], iLen);
}
if (j + ‘a’ != ch)
{
dp[iK][ch - ‘a’][1] = min(dp[iK][ch - ‘a’][1], iLen + 1);
}
else
{
const int iNewNum = min(100, iNew + 1);
dp[iK][ch - ‘a’][iNewNum] = min(dp[iK][ch - ‘a’][iNewNum], iLen + ((1 == iNew) || (9 == iNew) || (99 == iNew)));
}
}
}
}
memcpy(pre,dp, sizeof(pre));
}
int iMin = INT_MAX;
if (100 == s.length())
{
const char chMin = *std::min_element(s.begin(), s.end());
const char chMax = *std::max_element(s.begin(), s.end());
if (chMin == chMax)
{
iMin = 4;
}
}
for (int iK = 0; iK <= k; iK++)
{
for (int j = 0; j < 27; j++)
{
for (int iNew = 0; iNew < 101; iNew++)
{
if (pre[iK][j][iNew] < iMin)
{
iMin = pre[iK][j][iNew];
}
}
}
}
return iMin;
}
};

2023年2月 第二版

class Solution {
public:
int getLengthOfOptimalCompression(const string s, const int k) {
if (100 == s.length())
{
const char chMin = *std::min_element(s.begin(), s.end());
const char chMax = *std::max_element(s.begin(), s.end());
if (chMin == chMax)
{
const int iRemain = s.length() - k;
if (iRemain >= 100)
{
return 4;
}
if (iRemain >= 10)
{
return 3;
}
if (iRemain >= 2 )
{
return 2;
}
return iRemain;
}
}
int pre[100 + 1][27][11];
memset(pre, 101, sizeof(pre));
pre[0][26][1] = 0;
for (const auto& ch : s)
{
int dp[100 + 1][27][11];
memset(dp, 101, sizeof(dp));
for (int iK = 0; iK <= k; iK++)
{
for (int j = 0; j < 27; j++)
{
for (int iNew = 0; iNew < 11; iNew++)
{
const int& iLen = pre[iK][j][iNew];
if (iLen > 100)
{
continue;
}
if (iK < k)
{//删除
dp[iK + 1][j][iNew] = min(dp[iK + 1][j][iNew], iLen);
}
if (j + ‘a’ != ch)
{
dp[iK][ch - ‘a’][1] = min(dp[iK][ch - ‘a’][1], iLen + 1);
}
else
{
const int iNewNum = min(10, iNew + 1);
dp[iK][ch - ‘a’][iNewNum] = min(dp[iK][ch - ‘a’][iNewNum], iLen + ((1 == iNew) || (9 == iNew) || (99 == iNew)));
}
}
}
}
memcpy(pre, dp, sizeof(pre));
}
int iMin = INT_MAX;
for (int iK = 0; iK <= k; iK++)
{
for (int j = 0; j < 27; j++)
{
for (int iNew = 0; iNew < 11; iNew++)
{
if (pre[iK][j][iNew] < iMin)
{
iMin = pre[iK][j][iNew];
}
}
}
}
return iMin;
}
};

2023年2月版

class Solution {
public:
int getLengthOfOptimalCompression(const string s, const int k) {
if (100 == s.length())
{
const char chMin = *std::min_element(s.begin(), s.end());
const char chMax = *std::max_element(s.begin(), s.end());
if (chMin == chMax)
{
const int iRemain = s.length() - k;
if (iRemain >= 100)
{
return 4;
}
if (iRemain >= 10)
{
return 3;
}
if (iRemain >= 2 )
{
return 2;
}
return iRemain;
}
}
int pre[100 + 1][27][11];
memset(pre, 101, sizeof(pre));
pre[0][26][1] = 0;
for (const auto& ch : s)
{
int dp[100 + 1][27][11];
memset(dp, 101, sizeof(dp));
for (int iK = 0; iK <= k; iK++)
{
for (int j = 0; j < 27; j++)
{
for (int iNew = 1; iNew < 11; iNew++)
{
const int& iLen = pre[iK][j][iNew];
if (iLen > 100)
{
continue;
}
if (iK < k)
{//删除
dp[iK + 1][j][iNew] = min(dp[iK + 1][j][iNew], iLen);
}
if (j + ‘a’ != ch)
{
dp[iK][ch - ‘a’][1] = min(dp[iK][ch - ‘a’][1], iLen + 1);
}
else
{
const int iNewNum = min(10, iNew + 1);
dp[iK][ch - ‘a’][iNewNum] = min(dp[iK][ch - ‘a’][iNewNum], iLen + ((1 == iNew) || (9 == iNew) || (99 == iNew)));
}
}
}
}
memcpy(pre, dp, sizeof(pre));
}
int iMin = INT_MAX;
for (int iK = 0; iK <= k; iK++)
{
for (int j = 0; j < 27; j++)
{
for (int iNew = 1; iNew < 11; iNew++)
{
if (pre[iK][j][iNew] < iMin)
{
iMin = pre[iK][j][iNew];
}
}
}
}
return iMin;
}
};

扩展阅读

视频课程

有效学习:明确的目标 及时的反馈 拉伸区(难度合适),可以先学简单的课程,请移步CSDN学院,听白银讲师(也就是鄙人)的讲解。
https://edu.csdn.net/course/detail/38771

如何你想快

速形成战斗了,为老板分忧,请学习C#入职培训、C++入职培训等课程
https://edu.csdn.net/lecturer/6176

相关下载

想高屋建瓴的学习算法,请下载《喜缺全书算法册》doc版
https://download.csdn.net/download/he_zhidan/88348653

我想对大家说的话
闻缺陷则喜是一个美好的愿望,早发现问题,早修改问题,给老板节约钱。
子墨子言之:事无终始,无务多业。也就是我们常说的专业的人做专业的事。
如果程序是一条龙,那算法就是他的是睛

测试环境

操作系统:win7 开发环境: VS2019 C++17
或者 操作系统:win10 开发环境: VS2022 C++17
如无特殊说明,本算法用**C++**实现。

这篇关于【动态规划】【字符串】【行程码】1531. 压缩字符串的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/656603

相关文章

大语言模型(LLMs)能够进行推理和规划吗?

大语言模型(LLMs),基本上是经过强化训练的 n-gram 模型,它们在网络规模的语言语料库(实际上,可以说是我们文明的知识库)上进行了训练,展现出了一种超乎预期的语言行为,引发了我们的广泛关注。从训练和操作的角度来看,LLMs 可以被认为是一种巨大的、非真实的记忆库,相当于为我们所有人提供了一个外部的系统 1(见图 1)。然而,它们表面上的多功能性让许多研究者好奇,这些模型是否也能在通常需要系

2390.从字符串中移除星号

给你一个包含若干星号 * 的字符串 s 。 在一步操作中,你可以: 选中 s 中的一个星号。 移除星号左侧最近的那个非星号字符,并移除该星号自身。 返回移除 所有 星号之后的字符串。 注意: 生成的输入保证总是可以执行题面中描述的操作。 可以证明结果字符串是唯一的。 示例 1: 输入:s = “leet**cod*e” 输出:“lecoe” 解释:从左到右执行移除操作: 距离第 1 个

Python 字符串占位

在Python中,可以使用字符串的格式化方法来实现字符串的占位。常见的方法有百分号操作符 % 以及 str.format() 方法 百分号操作符 % name = "张三"age = 20message = "我叫%s,今年%d岁。" % (name, age)print(message) # 我叫张三,今年20岁。 str.format() 方法 name = "张三"age

模型压缩综述

https://www.cnblogs.com/shixiangwan/p/9015010.html

【杂记-浅谈DHCP动态主机配置协议】

DHCP动态主机配置协议 一、DHCP概述1、定义2、作用3、报文类型 二、DHCP的工作原理三、DHCP服务器的配置和管理 一、DHCP概述 1、定义 DHCP,Dynamic Host Configuration Protocol,动态主机配置协议,是一种网络协议,主要用于在IP网络中自动分配和管理IP地址以及其他网络配置参数。 2、作用 DHCP允许计算机和其他设备通

剑指offer(C++)--左旋转字符串

题目 汇编语言中有一种移位指令叫做循环左移(ROL),现在有个简单的任务,就是用字符串模拟这个指令的运算结果。对于一个给定的字符序列S,请你把其循环左移K位后的序列输出。例如,字符序列S=”abcXYZdef”,要求输出循环左移3位后的结果,即“XYZdefabc”。是不是很简单?OK,搞定它! class Solution {public:string LeftRotateStri

PAT-1039 到底买不买(20)(字符串的使用)

题目描述 小红想买些珠子做一串自己喜欢的珠串。卖珠子的摊主有很多串五颜六色的珠串,但是不肯把任何一串拆散了卖。于是小红要你帮忙判断一下,某串珠子里是否包含了全部自己想要的珠子?如果是,那么告诉她有多少多余的珠子;如果不是,那么告诉她缺了多少珠子。为方便起见,我们用[0-9]、[a-z]、[A-Z]范围内的字符来表示颜色。例如,YrR8RrY是小红想做的珠串;那么ppRYYGrrYBR2258可以

JavaWeb系列六: 动态WEB开发核心(Servlet) 上

韩老师学生 官网文档为什么会出现Servlet什么是ServletServlet在JavaWeb项目位置Servlet基本使用Servlet开发方式说明快速入门- 手动开发 servlet浏览器请求Servlet UML分析Servlet生命周期GET和POST请求分发处理通过继承HttpServlet开发ServletIDEA配置ServletServlet注意事项和细节 Servlet注

js小题:通过字符串执行同名变量怎么做

在JavaScript中,你不能直接使用一个字符串来直接引用一个变量,因为JavaScript是一种静态类型语言(尽管它的类型在运行时可以变化),变量的名字在编译时就被确定了。但是,有几种方法可以实现类似的功能: 使用对象(或Map)来存储变量: 你可以使用一个对象来存储你的变量,然后使用字符串作为键来访问这些变量。 let myVars = { 'var1': 'Hello', 'var

IPD推行成功的核心要素(十一)技术规划与平台规划促进公司战略成功

随着外部大环境的影响,各企业仅有良好的愿望是不够的。预测并顺应新兴市场和技术的变化,变危机为转机,不断推出强大的产品才是一个公司持续繁荣的根本保障。而高效的产品开发往往是基于某些关键技术,针对市场推出的一个或几个产品系列,这些产品系列通常共用一些产品平台,共用一种或者几种关键技术。当一家企业进入了平稳发展期,已经建立了较为完善的管理制度和产品开发流程,但是依然认为竞争对手是那样强大,那样不可战胜。