无人机在三维空间中的转动问题

2024-01-29 07:12

本文主要是介绍无人机在三维空间中的转动问题,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前提

这篇博客是对最近一个有关无人机拍摄图像项目中所学到的新知识的一个总结,比较杂乱,没有固定的写作顺序。

无人机坐标系旋转问题

在这里插入图片描述
上图是无人机坐标系,绕x轴是翻滚(Roll),绕y轴是俯仰(Pitch),绕z轴是偏航(Yaw)。在初始位置,无人机坐标系和世界坐标系是对齐的,在坐标系中存在一个原始点 ( x 0 , y 0 , z 0 ) (x_0,y_0,z_0) (x0,y0,z0),那么当无人机翻滚、俯仰、偏航后,此时的原始点被转动到了哪个位置处?
首先是绕x轴的翻滚,翻滚角为u,旋转矩阵为:
R x ( u ) = [ 1 0 0 0 c o s ( u ) − s i n ( u ) 0 s i n ( u ) c o s ( u ) ] R_x(u)=\begin{bmatrix} 1 & 0 & 0 \\ 0 & cos(u) & -sin(u) \\ 0 & sin(u) & cos(u) \end{bmatrix} Rx(u)= 1000cos(u)sin(u)0sin(u)cos(u)
可以看到,这个旋转矩阵和三维空间中某一点绕x轴旋转的旋转矩阵一样。
旋转后的坐标则为:
[ x 1 y 1 z 1 ] = R x ( u ) [ x 0 y 0 z 0 ] \begin{bmatrix} x_1 \\ y_1 \\ z_1 \end{bmatrix}= R_x(u)\begin{bmatrix} x_0 \\ y_0 \\ z_0 \end{bmatrix} x1y1z1 =Rx(u) x0y0z0
接下来是绕y轴的俯仰,俯仰角为v,旋转矩阵为:
R y ( v ) = [ c o s ( v ) 0 s i n ( v ) 0 1 0 − s i n ( v ) 0 c o s ( v ) ] R_y(v)=\begin{bmatrix} cos(v) & 0 & sin(v) \\ 0 & 1 & 0 \\ -sin(v) & 0 & cos(v) \end{bmatrix} Ry(v)= cos(v)0sin(v)010sin(v)0cos(v)
可以看到,这个旋转矩阵和三维空间中某一点绕y轴旋转的旋转矩阵一样。
旋转后的坐标则为:
[ x 2 y 2 z 2 ] = R y ( u ) [ x 1 y 1 z 1 ] \begin{bmatrix} x_2 \\ y_2 \\ z_2 \end{bmatrix}= R_y(u)\begin{bmatrix} x_1 \\ y_1 \\ z_1 \end{bmatrix} x2y2z2 =Ry(u) x1y1z1

接下来是绕z轴的偏航,偏航角为w,旋转矩阵为:
R z ( v ) = [ c o s ( w ) − s i n ( w ) 0 s i n ( w ) c o s ( w ) 0 0 0 1 ] R_z(v)=\begin{bmatrix} cos(w) & -sin(w) & 0 \\ sin(w) & cos(w) & 0 \\ 0 & 0 & 1 \end{bmatrix} Rz(v)= cos(w)sin(w)0sin(w)cos(w)0001
可以看到,这个旋转矩阵和三维空间中某一点绕z轴旋转的旋转矩阵一样。
旋转后的坐标则为:
[ x 3 y 3 z 3 ] = R z ( u ) [ x 2 y 2 z 2 ] \begin{bmatrix} x_3 \\ y_3 \\ z_3 \end{bmatrix}= R_z(u)\begin{bmatrix} x_2 \\ y_2 \\ z_2 \end{bmatrix} x3y3z3 =Rz(u) x2y2z2
将三个旋转矩阵结合起来就就是:
[ x 3 y 3 z 3 ] = R z ( w ) × R y ( v ) × R x ( u ) [ x 0 y 0 z 0 ] \begin{bmatrix} x_3 \\ y_3 \\ z_3 \end{bmatrix}= R_z(w)\times R_y(v)\times R_x(u)\begin{bmatrix} x_0 \\ y_0 \\ z_0 \end{bmatrix} x3y3z3 =Rz(w)×Ry(v)×Rx(u) x0y0z0
可以看到这里面有很重要的一点就是: R z ( w ) 、 R y ( v ) 、 R x ( u ) R_z(w)、R_y(v)、R_x(u) Rz(w)Ry(v)Rx(u)相乘时的顺序不能发生改变,一旦发生改变(矩阵相乘没有交换律),则结果也会发生变化。
对上面进行总结,整体上如下图所示:
在这里插入图片描述
已知在无人机坐标系下的一点 ( x 0 , y 0 , z 0 ) (x_0,y_0,z_0) (x0,y0,z0),求无人机在翻滚u度,俯仰v度,偏航w度后的点坐标 ( x 3 , y 3 , z 3 ) (x_3,y_3,z_3) (x3,y3,z3)。计算公式如上所示。

图像相关问题

视场角

一般来说,相机的视场角(FOV)有三个,H FOV(水平视场角)、V FOV(垂直视场角),D FOV(对角视场角),如下图所示,一目了然。
在这里插入图片描述

图像的单应性变换

单应性的一个不严谨定义是:用无镜头畸变的相机从不同位置拍摄同一平面物体的图像之间存在单应性,可以用透视变换表示。
在这里插入图片描述
也就是说,给Right view的图像上的点经过透视变换可以变到left view图像上对应位置,透视变换也就是一个矩阵,我们称之为单应性矩阵。
这里不对单应性矩阵进行详细介绍,只是说求解单应性矩阵有8个参数,因此需要四组对应点。
一种常见的方法是寻找两张图像中的相似特征点,然后用来求解单应性矩阵,参考此链接中有相关代码,以及对单应性矩阵的具体介绍。

findHomography函数和getPerspectiveTransform函数

两个函数都可以用来求单应性矩阵,结果一样。但getPerspectiveTransform只会拿四组点去计算,findHomography会拿多组点(大于等于4组)点去计算。

参考链接

  1. https://danceswithcode.net/engineeringnotes/rotations_in_3d/rotations_in_3d_part1.html
  2. https://www.sohu.com/a/657116799_121116014
  3. https://zhuanlan.zhihu.com/p/74597564
  4. https://blog.csdn.net/Sunshine_in_Moon/article/details/45478351

这篇关于无人机在三维空间中的转动问题的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/656143

相关文章

SpringBoot应用中出现的Full GC问题的场景与解决

《SpringBoot应用中出现的FullGC问题的场景与解决》这篇文章主要为大家详细介绍了SpringBoot应用中出现的FullGC问题的场景与解决方法,文中的示例代码讲解详细,感兴趣的小伙伴可... 目录Full GC的原理与触发条件原理触发条件对Spring Boot应用的影响示例代码优化建议结论F

MySQL 中查询 VARCHAR 类型 JSON 数据的问题记录

《MySQL中查询VARCHAR类型JSON数据的问题记录》在数据库设计中,有时我们会将JSON数据存储在VARCHAR或TEXT类型字段中,本文将详细介绍如何在MySQL中有效查询存储为V... 目录一、问题背景二、mysql jsON 函数2.1 常用 JSON 函数三、查询示例3.1 基本查询3.2

Pyserial设置缓冲区大小失败的问题解决

《Pyserial设置缓冲区大小失败的问题解决》本文主要介绍了Pyserial设置缓冲区大小失败的问题解决,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 目录问题描述原因分析解决方案问题描述使用set_buffer_size()设置缓冲区大小后,buf

resultMap如何处理复杂映射问题

《resultMap如何处理复杂映射问题》:本文主要介绍resultMap如何处理复杂映射问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录resultMap复杂映射问题Ⅰ 多对一查询:学生——老师Ⅱ 一对多查询:老师——学生总结resultMap复杂映射问题

java实现延迟/超时/定时问题

《java实现延迟/超时/定时问题》:本文主要介绍java实现延迟/超时/定时问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Java实现延迟/超时/定时java 每间隔5秒执行一次,一共执行5次然后结束scheduleAtFixedRate 和 schedu

如何解决mmcv无法安装或安装之后报错问题

《如何解决mmcv无法安装或安装之后报错问题》:本文主要介绍如何解决mmcv无法安装或安装之后报错问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录mmcv无法安装或安装之后报错问题1.当我们运行YOwww.chinasem.cnLO时遇到2.找到下图所示这里3.

浅谈配置MMCV环境,解决报错,版本不匹配问题

《浅谈配置MMCV环境,解决报错,版本不匹配问题》:本文主要介绍浅谈配置MMCV环境,解决报错,版本不匹配问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录配置MMCV环境,解决报错,版本不匹配错误示例正确示例总结配置MMCV环境,解决报错,版本不匹配在col

Vue3使用router,params传参为空问题

《Vue3使用router,params传参为空问题》:本文主要介绍Vue3使用router,params传参为空问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录vue3使用China编程router,params传参为空1.使用query方式传参2.使用 Histo

SpringBoot首笔交易慢问题排查与优化方案

《SpringBoot首笔交易慢问题排查与优化方案》在我们的微服务项目中,遇到这样的问题:应用启动后,第一笔交易响应耗时高达4、5秒,而后续请求均能在毫秒级完成,这不仅触发监控告警,也极大影响了用户体... 目录问题背景排查步骤1. 日志分析2. 性能工具定位优化方案:提前预热各种资源1. Flowable

springboot循环依赖问题案例代码及解决办法

《springboot循环依赖问题案例代码及解决办法》在SpringBoot中,如果两个或多个Bean之间存在循环依赖(即BeanA依赖BeanB,而BeanB又依赖BeanA),会导致Spring的... 目录1. 什么是循环依赖?2. 循环依赖的场景案例3. 解决循环依赖的常见方法方法 1:使用 @La