本文主要是介绍信号处理中用DCT进行图像处理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
二维DCT变换
这里来看看二维DCT变换的公式:
clear; clc; I = [12,23,53,16;42,16,68,45;34,62,73,26;72,15,34,28]; %数据块 A = zeros(4); %变换矩阵A,也可以通过函数dctmtx(n)求得 for i = 0:3for j = 0:3if i == 0a = sqrt(1/4);elsea = sqrt(2/4);endA(i+1,j+1) = a*cos((j+0.5)*pi*i/4)end end D = A*I*A'; %DCT变换 D1 = dct2(I); %matlab DCT函数进行DCT变换 D2 = A'*D*A; %DCT逆变换
另外通过运行函数dctmtx(4)可以发现得到的变换矩阵与A完全相同。
Matlab 函数实现
matlab实现离散余弦变换有两种方法:
- 一种为函数dct2( ), 使用函数dct2,该函数用一个基于FFT的算法来提高当输入较大的方阵时的计算速度。
- 另一种为函数dctmtx( ), 使用由dctmtx函数返回的DCT变换矩阵,这种方法较适合于较小的输入方阵(例如8×8或16×16)。
-
. 函数:dct2( )
实现图像的二维离散余弦变换。调用格式为:
B = dct2(A)
B = dct2(A,[M N])
B = dct2(A,M,N)
式中A表示要变换的图像,M和N是可选参数,表示填充后的图像矩阵大小,B表示变换后得到的图像矩阵。其逆变换函数为idct2( ); -
I = imread('1_1.jpg');%输入灰度图像 D = dct2(I); %DCT变换 D1 = idct2(D); %逆变换 subplot(1,2,1);imshow(I); subplot(1,2,2);imshow(uint8(D1));
2. 函数:dctmtx( )
D = dctmtx(N)
式中D是返回N×N的DCT变换矩阵,如果矩阵A是N×N方阵,则A的DCT变换可用D×A×D’来计算。这在有时比dct2计算快,特别是对于A很大的情况。上面有提到过。对于图像的DCT变换,这里还需用到一个函数blkproc( ),其功能为对图像分块进行DCT变换。
blkproc( )定义如下:
B = blkproc(A,[M N],Fun) ,A为输入图像,M*N为块大小,Fun为处理函数
常用的方式为:
B = blkproc(A,[8,8],’P1*x*P2’,T,T’); T为变换矩阵,P1和P2为参数,代表T*x*T’ 。 -
I = imread('1_1.jpg'); %输入灰度图像 I = im2double(I); D = dctmtx(8); C = blkproc(I,[8,8],'P1*x*P2',D,D'); %D'为D的转置 mask1=[1 1 1 1 1 0 0 0 1 1 1 1 0 0 0 0 1 1 1 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]; mask2=[1 1 1 1 0 0 0 0 1 1 1 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]; mask3=[1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];X = blkproc(C,[8,8],'P1.*x',mask1); %保留15个系数 I1 = blkproc(X,[8,8],'P1*x*P2',D',D); %重构图像 X2 = blkproc(C,[8,8],'P1.*x',mask2); %保留10个系数 I2 = blkproc(X2,[8,8],'P1*x*P2',D',D); %重构图像 X3 = blkproc(C,[8,8],'P1.*x',mask3); %保留3个系数 I3 = blkproc(X3,[8,8],'P1*x*P2',D',D); %重构图像 subplot(2,4,1);imshow(I); subplot(2,4,2);imshow(I1); subplot(2,4,3);imshow(I2); subplot(2,4,4);imshow(I3);
上面代码中,通过求得图像DCT系数,利用mask等矩阵对其进行量化,保留左上角主要的系数值,对于右下角的值由于其为非常小的高频系数,量化去除后对于图像的质量影响不大,可以利用这一性质对图像进行压缩处理。
保留系数越多则图像压缩质量越好,下面比较几幅图像质量,从左到右分别为原图,mask1,mask2,mask3;
-
这篇关于信号处理中用DCT进行图像处理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!