信号处理中用DCT进行图像处理

2024-01-28 14:10

本文主要是介绍信号处理中用DCT进行图像处理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

转自: http://blog.csdn.net/ahafg/article/details/48808443
DCT又称离散余弦变换,是一种块变换方式,只使用余弦函数来表达信号,与傅里叶变换紧密相关。常用于图像数据的压缩,通过将图像分成大小相等(一般为8*8)的块,利用DCT对其进行变换,得到更加简洁的数据。因为图像像素间存在较大的空间相关性,DCT可以大大减小这些相关性,使图像能量集中在左上角区域,从而利于数据压缩。变换后得到的数据称为DCT系数。这一过程是无损的。

二维DCT变换

这里来看看二维DCT变换的公式:


 

clear; clc; I = [12,23,53,16;42,16,68,45;34,62,73,26;72,15,34,28]; %数据块 A = zeros(4); %变换矩阵A,也可以通过函数dctmtx(n)求得 for i = 0:3for j = 0:3if i == 0a = sqrt(1/4);elsea = sqrt(2/4);endA(i+1,j+1) = a*cos((j+0.5)*pi*i/4)end end D = A*I*A'; %DCT变换 D1 = dct2(I); %matlab DCT函数进行DCT变换 D2 = A'*D*A; %DCT逆变换


  由结果可以看出,D,D1方式得到的DCT系数相同,说明矩阵形式的DCT变换公式是正确的,D2的数据与原数据I相同,实现了数据恢复。

另外通过运行函数dctmtx(4)可以发现得到的变换矩阵与A完全相同。

Matlab 函数实现

matlab实现离散余弦变换有两种方法:

  1. 一种为函数dct2( ), 使用函数dct2,该函数用一个基于FFT的算法来提高当输入较大的方阵时的计算速度。
  2. 另一种为函数dctmtx( ), 使用由dctmtx函数返回的DCT变换矩阵,这种方法较适合于较小的输入方阵(例如8×8或16×16)。
  3. . 函数:dct2( )

    实现图像的二维离散余弦变换。调用格式为: 
    B = dct2(A) 
    B = dct2(A,[M N]) 
    B = dct2(A,M,N) 
    式中A表示要变换的图像,M和N是可选参数,表示填充后的图像矩阵大小,B表示变换后得到的图像矩阵。其逆变换函数为idct2( ); 

  4. I = imread('1_1.jpg');%输入灰度图像 D = dct2(I); %DCT变换 D1 = idct2(D); %逆变换 subplot(1,2,1);imshow(I); subplot(1,2,2);imshow(uint8(D1));

    2. 函数:dctmtx( )

    D = dctmtx(N) 
    式中D是返回N×N的DCT变换矩阵,如果矩阵A是N×N方阵,则A的DCT变换可用D×A×D’来计算。这在有时比dct2计算快,特别是对于A很大的情况。上面有提到过。

    对于图像的DCT变换,这里还需用到一个函数blkproc( ),其功能为对图像分块进行DCT变换。 
    blkproc( )定义如下: 
    B = blkproc(A,[M N],Fun) ,A为输入图像,M*N为块大小,Fun为处理函数 
    常用的方式为: 
    B = blkproc(A,[8,8],’P1*x*P2’,T,T’); T为变换矩阵,P1和P2为参数,代表T*x*T’ 。

  5. I = imread('1_1.jpg'); %输入灰度图像 I = im2double(I); D = dctmtx(8); C = blkproc(I,[8,8],'P1*x*P2',D,D'); %D'为D的转置 mask1=[1 1 1 1 1 0 0 0 1 1 1 1 0 0 0 0 1 1 1 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]; mask2=[1 1 1 1 0 0 0 0 1 1 1 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]; mask3=[1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];X = blkproc(C,[8,8],'P1.*x',mask1); %保留15个系数 I1 = blkproc(X,[8,8],'P1*x*P2',D',D); %重构图像 X2 = blkproc(C,[8,8],'P1.*x',mask2); %保留10个系数 I2 = blkproc(X2,[8,8],'P1*x*P2',D',D); %重构图像 X3 = blkproc(C,[8,8],'P1.*x',mask3); %保留3个系数 I3 = blkproc(X3,[8,8],'P1*x*P2',D',D); %重构图像 subplot(2,4,1);imshow(I); subplot(2,4,2);imshow(I1); subplot(2,4,3);imshow(I2); subplot(2,4,4);imshow(I3);

    上面代码中,通过求得图像DCT系数,利用mask等矩阵对其进行量化,保留左上角主要的系数值,对于右下角的值由于其为非常小的高频系数,量化去除后对于图像的质量影响不大,可以利用这一性质对图像进行压缩处理。

    保留系数越多则图像压缩质量越好,下面比较几幅图像质量,从左到右分别为原图,mask1,mask2,mask3;


  6.  

这篇关于信号处理中用DCT进行图像处理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/653856

相关文章

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

业务中14个需要进行A/B测试的时刻[信息图]

在本指南中,我们将全面了解有关 A/B测试 的所有内容。 我们将介绍不同类型的A/B测试,如何有效地规划和启动测试,如何评估测试是否成功,您应该关注哪些指标,多年来我们发现的常见错误等等。 什么是A/B测试? A/B测试(有时称为“分割测试”)是一种实验类型,其中您创建两种或多种内容变体——如登录页面、电子邮件或广告——并将它们显示给不同的受众群体,以查看哪一种效果最好。 本质上,A/B测

遮罩,在指定元素上进行遮罩

废话不多说,直接上代码: ps:依赖 jquer.js 1.首先,定义一个 Overlay.js  代码如下: /*遮罩 Overlay js 对象*/function Overlay(options){//{targetId:'',viewHtml:'',viewWidth:'',viewHeight:''}try{this.state=false;//遮罩状态 true 激活,f

利用matlab bar函数绘制较为复杂的柱状图,并在图中进行适当标注

示例代码和结果如下:小疑问:如何自动选择合适的坐标位置对柱状图的数值大小进行标注?😂 clear; close all;x = 1:3;aa=[28.6321521955954 26.2453660695847 21.69102348512086.93747104431360 6.25442246899816 3.342835958564245.51365061796319 4.87

Python脚本:对文件进行批量重命名

字符替换:批量对文件名中指定字符进行替换添加前缀:批量向原文件名添加前缀添加后缀:批量向原文件名添加后缀 import osdef Rename_CharReplace():#对文件名中某字符进行替换(已完结)re_dir = os.getcwd()re_list = os.listdir(re_dir)original_char = input('请输入你要替换的字符:')replace_ch

SSM项目使用AOP技术进行日志记录

本步骤只记录完成切面所需的必要代码 本人开发中遇到的问题: 切面一直切不进去,最后发现需要在springMVC的核心配置文件中中开启注解驱动才可以,只在spring的核心配置文件中开启是不会在web项目中生效的。 之后按照下面的代码进行配置,然后前端在访问controller层中的路径时即可观察到日志已经被正常记录到数据库,代码中有部分注释,看不懂的可以参照注释。接下来进入正题 1、导入m

Temu官方宣导务必将所有的点位材料进行检测-RSL资质检测

关于饰品类产品合规问题宣导: 产品法规RSL要求 RSL测试是根据REACH法规及附录17的要求进行测试。REACH法规是欧洲一项重要的法规,其中包含许多对化学物质进行限制的规定和高度关注物质。 为了确保珠宝首饰的安全性,欧盟REACH法规规定,珠宝首饰上架各大电商平台前必须进行RSLReport(欧盟禁限用化学物质检测报告)资质认证,以确保产品不含对人体有害的化学物质。 RSL-铅,

参会邀请 | 第二届机器视觉、图像处理与影像技术国际会议(MVIPIT 2024)

第二届机器视觉、图像处理与影像技术国际会议(MVIPIT 2024)将于2024年9月13日-15日在中国张家口召开。 MVIPIT 2024聚焦机器视觉、图像处理与影像技术,旨在为专家、学者和研究人员提供一个国际平台,分享研究成果,讨论问题和挑战,探索前沿技术。诚邀高校、科研院所、企业等有关方面的专家学者参加会议。 9月13日(周五):签到日 9月14日(周六):会议日 9月15日(周日

Python知识点:如何使用Anaconda进行科学计算环境管理

使用 Anaconda 进行科学计算环境管理是一个非常强大且灵活的方式,特别适合处理 Python 和 R 语言的包管理和虚拟环境管理。Anaconda 集成了许多用于科学计算和数据分析的库,并提供了环境隔离的功能,确保不同项目之间不会发生包冲突。以下是使用 Anaconda 进行科学计算环境管理的详细步骤: 1. 安装 Anaconda 首先,你需要在本地机器上安装 Anaconda。你可以

Python知识点:使用Python进行PDF文档处理

使用 Python 进行 PDF 文档处理可以通过多种库来实现,包括 PyPDF2、pdfplumber、reportlab、pdfminer 等。这些库可以处理不同的 PDF 任务,例如 提取文本、拆分合并 PDF、修改 PDF、生成 PDF 等。以下是几种常见操作及对应的库和代码示例。 1. 安装常用库 首先,安装常用的 PDF 处理库: pip install PyPDF2 pdfpl