解读BEVFormer,新一代CV工作的基石

2024-01-27 06:52

本文主要是介绍解读BEVFormer,新一代CV工作的基石,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章出处

BEVFormer这篇文章很有划时代的意义,改变了许多视觉领域工作的pipeline[2203.17270] BEVFormer: Learning Bird's-Eye-View Representation from Multi-Camera Images via Spatiotemporal Transformers (arxiv.org)icon-default.png?t=N7T8https://arxiv.org/abs/2203.17270

BEV (Bird's Eye View)

即鸟瞰图通常用于描述地面上的物体、车辆、行人以及其他障碍物的位置和运动,含有丰富的特征。在自动驾驶系统中,BEV可以帮助车辆更好地理解周围的车辆和行人的位置,从而更安全地进行驾驶决策。

BEVFormer

这是一种基于Transformer的BEV编码器,从多视角摄像头和历史BEV特征中聚合时空特征,即时空编码,注意力机制用来融合时空信息。

文中提到了三个关键点

  • 网格状BEV查询,通过灵活的注意机制融合空间和时间特征

  • 空间交叉注意模块,用于聚合来自多摄像头图像的空间特征

  • 时间自注意模块,来自RNN的思想,用于从历史BEV特征中提取时序信息,(移动物体的速度估计和遮挡物体的检测)递归操作实现的准确速度预测

上面这个是文章中给出的示意图。输入数据是六个摄像头在相同时间段内的数据,每个时刻对应了六张图表示周围的空间。

具体工作流程

先对前一个时刻的BEV特征做查询结合上当前的时刻特征,这样就是能够学习到时序关系,输出的BEV query再空间交叉注意力查询多摄像头的特征信息,生成当前时间戳的BEV特征bev_embedding。

loss和损失评估

匈牙利算法做框匹配,利用已知的框位和模型框选计算L1 loss,结合分类损失平均最小

文中的关键概念解析

空间交叉注意力的概念

每个BEV查询只和感兴趣区域内的特征做交互,减少计算需要,也不会损失很多关键信息,学习效果也可以比全局注意力机制更强。这是基于可变注意力Deformable Attention的一个改进。首先操作是升为柱状的查询,不同高度的点只会对应某几个视角下2D图片的几个点位置,只对这些区域做查询,太高或太低导致不出现在2D图片中的投影点就不查询。

时间自注意力的概念

BEV查询会交互两个特征信息,当前的BEV和历史的BEV,比较特例的是时间序列的第一个样本不包含时间信息。操作是先将BEV查询Q和t-1时刻的特征对齐。这是因为车在运动,前后时刻的特征在空间上不对齐,使用车辆的旋转角度和偏移信息数据来做特征对齐。车周围的物体运动依靠注意力机制的学习实现对齐。文中提到的偏移量是一个车在运动时造成画面中特征的偏移值,这个根据自注意力学习得到,偏移量是对于参考点的一个修正作用。

BEV Quires

BEV中自注意力查询的方式:每次的操作在平面中查询一块的H,W大小网格中的信息,查询前对BEV查询Q做位置嵌入,目的是用于查询得到BEV特征图

应用

  • 3D目标检测,利用得到的BEV特征作为3D检测头输入,实现3D边框的检测和速度预测,无需后处理。

  • 地图分割,设计2D分割头,类似语义分割,利用掩码解码器做类别查询,实现车辆,道路,车道线等划分

代码部分的一些解读

论文项目的代码仓库fundamentalvision/BEVFormer: [ECCV 2022] This is the official implementation of BEVFormer, a camera-only framework for autonomous driving perception, e.g., 3D object detection and semantic map segmentation. (github.com)icon-default.png?t=N7T8https://github.com/fundamentalvision/BEVFormer

观察代码部分,可以发现其中先分别构建构建分类和回归的分支。

对于目标检测和边缘标注任务,将模型输出的当前bev_embedding特征做一个解码。

用到了多层的Decoder嵌套,每一层都会有计算分类和回归结果,除了初始选定参考点,每一次都是用回归的结果对前面参考点的一个优化,最终得到分类。具体是先通过自注意力更新query以及参考点做可变形的注意力,酸菜查询特征,再调用回归分支计算得到预测输出,输出的就是预测框的坐标和相关的运动信息,拿来更新点。

框选的实现是根据已经解码出来的一组点数据,结合做3D格式转换实现视频中框选和标注

 

这篇关于解读BEVFormer,新一代CV工作的基石的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/649392

相关文章

MySQL中时区参数time_zone解读

《MySQL中时区参数time_zone解读》MySQL时区参数time_zone用于控制系统函数和字段的DEFAULTCURRENT_TIMESTAMP属性,修改时区可能会影响timestamp类型... 目录前言1.时区参数影响2.如何设置3.字段类型选择总结前言mysql 时区参数 time_zon

Ubuntu系统怎么安装Warp? 新一代AI 终端神器安装使用方法

《Ubuntu系统怎么安装Warp?新一代AI终端神器安装使用方法》Warp是一款使用Rust开发的现代化AI终端工具,该怎么再Ubuntu系统中安装使用呢?下面我们就来看看详细教程... Warp Terminal 是一款使用 Rust 开发的现代化「AI 终端」工具。最初它只支持 MACOS,但在 20

MySQL中的锁和MVCC机制解读

《MySQL中的锁和MVCC机制解读》MySQL事务、锁和MVCC机制是确保数据库操作原子性、一致性和隔离性的关键,事务必须遵循ACID原则,锁的类型包括表级锁、行级锁和意向锁,MVCC通过非锁定读和... 目录mysql的锁和MVCC机制事务的概念与ACID特性锁的类型及其工作机制锁的粒度与性能影响多版本

Redis过期键删除策略解读

《Redis过期键删除策略解读》Redis通过惰性删除策略和定期删除策略来管理过期键,惰性删除策略在键被访问时检查是否过期并删除,节省CPU开销但可能导致过期键滞留,定期删除策略定期扫描并删除过期键,... 目录1.Redis使用两种不同的策略来删除过期键,分别是惰性删除策略和定期删除策略1.1惰性删除策略

SSID究竟是什么? WiFi网络名称及工作方式解析

《SSID究竟是什么?WiFi网络名称及工作方式解析》SID可以看作是无线网络的名称,类似于有线网络中的网络名称或者路由器的名称,在无线网络中,设备通过SSID来识别和连接到特定的无线网络... 当提到 Wi-Fi 网络时,就避不开「SSID」这个术语。简单来说,SSID 就是 Wi-Fi 网络的名称。比如

Redis与缓存解读

《Redis与缓存解读》文章介绍了Redis作为缓存层的优势和缺点,并分析了六种缓存更新策略,包括超时剔除、先删缓存再更新数据库、旁路缓存、先更新数据库再删缓存、先更新数据库再更新缓存、读写穿透和异步... 目录缓存缓存优缺点缓存更新策略超时剔除先删缓存再更新数据库旁路缓存(先更新数据库,再删缓存)先更新数

C#反射编程之GetConstructor()方法解读

《C#反射编程之GetConstructor()方法解读》C#中Type类的GetConstructor()方法用于获取指定类型的构造函数,该方法有多个重载版本,可以根据不同的参数获取不同特性的构造函... 目录C# GetConstructor()方法有4个重载以GetConstructor(Type[]

MCU7.keil中build产生的hex文件解读

1.hex文件大致解读 闲来无事,查看了MCU6.用keil新建项目的hex文件 用FlexHex打开 给我的第一印象是:经过软件的解释之后,发现这些数据排列地十分整齐 :02000F0080FE71:03000000020003F8:0C000300787FE4F6D8FD75810702000F3D:00000001FF 把解释后的数据当作十六进制来观察 1.每一行数据

Java ArrayList扩容机制 (源码解读)

结论:初始长度为10,若所需长度小于1.5倍原长度,则按照1.5倍扩容。若不够用则按照所需长度扩容。 一. 明确类内部重要变量含义         1:数组默认长度         2:这是一个共享的空数组实例,用于明确创建长度为0时的ArrayList ,比如通过 new ArrayList<>(0),ArrayList 内部的数组 elementData 会指向这个 EMPTY_EL

Spring 源码解读:自定义实现Bean定义的注册与解析

引言 在Spring框架中,Bean的注册与解析是整个依赖注入流程的核心步骤。通过Bean定义,Spring容器知道如何创建、配置和管理每个Bean实例。本篇文章将通过实现一个简化版的Bean定义注册与解析机制,帮助你理解Spring框架背后的设计逻辑。我们还将对比Spring中的BeanDefinition和BeanDefinitionRegistry,以全面掌握Bean注册和解析的核心原理。