基于网络数据的净水器销量影响因素分析

2024-01-27 03:59

本文主要是介绍基于网络数据的净水器销量影响因素分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

什么是数据分析呢?数据分析就是利用适当的统计方法对收集来的数据进行分析,将数据汇总,充分发挥数据的作用。接下来聊聊数据分析的大致流程:

1.明确分析的目的,把数据的潜在价值挖掘出来,看看数据本身的规律

2.数据的采集与清洗(无非是线上线下、数据库之类的,数据清洗也许会是个大工程可能需要将不规整的数据弄得规整)

3.描述统计(以图形或表格的方式直观呈现出来,我经常用到图形可能是直方图、图形图、箱线图、散点图等。)

4.进行数据分析及建模

5.报告的撰写(一份好的数据分析报告,首先需要有一个好的分析框架,并且图文并茂,层次明晰,能够让阅读者一目了然。结构清晰、主次分明可以使阅读者正确理解报告内容;图文并茂,可以令数据更加生动活泼,提高视觉冲击力,有助于阅读者更形象、直观地看清楚问题和结论,从而产生思考。好的数据分析报告需要有明确的结论、建议或解决方案。)

这一切的前提是对行业的了解,数据与业务的结合,根据业务的需要制定发展计划,归类出需要整理的数据。

《基于网络数据的净水器销量影响因素分析》

主要针对自己的论文进行数据分析的了解,以统计学、数据挖掘理论知识为基础,借助R语言软件,通过网络爬虫获净水器的相关数据。研究净水器销量影响因素以及影响程度,借助回归模型进行分析, 由于分析的被解释变量为数值型变量,解释变量为分类型变量及数值型变量,故建立多元线性回归模型进行分析

当时的主要研究框架如下:

指标的选择:

描述统计

Ø净水器的销量作对数直方图,可以看出净水器销量是呈现右偏分布的

Ø销量最高的是海尔品牌的非直饮净水器,保修期为1年,智能类型为阿里小智,其原价为699/元,促销价为168/元,价格波动幅度较大。

 

回归模型的构建

模型解读

Ø注:针对取对数后的净水器销量分析说明:统一对数线性模型的系数估计解读为“增长率”,在控制其它因素不变的情况下:

Ø保修期:保修期为5年的净水器销量最高,比保修期为1年的销量高55%

Ø智能类型:阿里小智的净水器销量最高,其次为其他,不支持智能类型的净水器销量最低;

Ø功效:非直饮的净水器销量最高,功效为非直饮的净水器销量比直饮高12%

Ø店铺分类:官方旗舰店的净水器销量最高,店铺分类为官方旗舰店的净水器销量比专营店的销量高17%

Ø物流评分的增加会带来净水器销量的增加;

Ø原价的降低会带来净水器销量的增加;

Ø人气值的增加可能会带来净水器销量的增加。

Ø对因变量销量取对数后,建立对数线性模型 ,模型的F检验拒绝原假设,说明建立的模型显著。调整后的可决系数为0.53,模型的拟合程度尚可接受。

模型检验与修正

结论

通过对网络数据进行描述统计分析和模型分析,得出净水器销量影响因素如下所示:

1)净水器的使用位置影响销量,即净水器用在终端净水的位置还是水运输过程中的净水,或者是水源头净水的位置,都将影响消费者对净水器的需求。

2)店铺分类对净水器的销量有影响,专卖店和官方旗舰店的口碑,影响净水器的销量。

3)净水器的智能类型影响净水器的销量,净水器的质量效果越好,其销量将会受到影响。

4)净水器的功效决定净水器的用途,其功效也影响净水器的销量。功效为非直饮功效的销量比较高,而大多数消费者还是比较亲睐于非直饮的净水器。

5)净水器的网络店铺评分影响净水器的销量。对店铺评分越高,被顾客关注度越高,净水器销售的成交量越高。

6)保修期时间长的净水器销量较高,保修时间长使得顾客安全感提升且省去了很多维修费用。

7)净水器价格低且打折力度大也会使得净水器的销量提高。

8)当人气值和累计评价较高时,增加了消费者的购物信心其产品的销量也就会有所提高。

建议

创新点与不足

这篇关于基于网络数据的净水器销量影响因素分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/649003

相关文章

Pandas统计每行数据中的空值的方法示例

《Pandas统计每行数据中的空值的方法示例》处理缺失数据(NaN值)是一个非常常见的问题,本文主要介绍了Pandas统计每行数据中的空值的方法示例,具有一定的参考价值,感兴趣的可以了解一下... 目录什么是空值?为什么要统计空值?准备工作创建示例数据统计每行空值数量进一步分析www.chinasem.cn处

如何使用 Python 读取 Excel 数据

《如何使用Python读取Excel数据》:本文主要介绍使用Python读取Excel数据的详细教程,通过pandas和openpyxl,你可以轻松读取Excel文件,并进行各种数据处理操... 目录使用 python 读取 Excel 数据的详细教程1. 安装必要的依赖2. 读取 Excel 文件3. 读

Spring 请求之传递 JSON 数据的操作方法

《Spring请求之传递JSON数据的操作方法》JSON就是一种数据格式,有自己的格式和语法,使用文本表示一个对象或数组的信息,因此JSON本质是字符串,主要负责在不同的语言中数据传递和交换,这... 目录jsON 概念JSON 语法JSON 的语法JSON 的两种结构JSON 字符串和 Java 对象互转

C++如何通过Qt反射机制实现数据类序列化

《C++如何通过Qt反射机制实现数据类序列化》在C++工程中经常需要使用数据类,并对数据类进行存储、打印、调试等操作,所以本文就来聊聊C++如何通过Qt反射机制实现数据类序列化吧... 目录设计预期设计思路代码实现使用方法在 C++ 工程中经常需要使用数据类,并对数据类进行存储、打印、调试等操作。由于数据类

SpringBoot使用GZIP压缩反回数据问题

《SpringBoot使用GZIP压缩反回数据问题》:本文主要介绍SpringBoot使用GZIP压缩反回数据问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录SpringBoot使用GZIP压缩反回数据1、初识gzip2、gzip是什么,可以干什么?3、Spr

Java程序进程起来了但是不打印日志的原因分析

《Java程序进程起来了但是不打印日志的原因分析》:本文主要介绍Java程序进程起来了但是不打印日志的原因分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Java程序进程起来了但是不打印日志的原因1、日志配置问题2、日志文件权限问题3、日志文件路径问题4、程序

Java字符串操作技巧之语法、示例与应用场景分析

《Java字符串操作技巧之语法、示例与应用场景分析》在Java算法题和日常开发中,字符串处理是必备的核心技能,本文全面梳理Java中字符串的常用操作语法,结合代码示例、应用场景和避坑指南,可快速掌握字... 目录引言1. 基础操作1.1 创建字符串1.2 获取长度1.3 访问字符2. 字符串处理2.1 子字

SpringBoot集成Milvus实现数据增删改查功能

《SpringBoot集成Milvus实现数据增删改查功能》milvus支持的语言比较多,支持python,Java,Go,node等开发语言,本文主要介绍如何使用Java语言,采用springboo... 目录1、Milvus基本概念2、添加maven依赖3、配置yml文件4、创建MilvusClient

SpringValidation数据校验之约束注解与分组校验方式

《SpringValidation数据校验之约束注解与分组校验方式》本文将深入探讨SpringValidation的核心功能,帮助开发者掌握约束注解的使用技巧和分组校验的高级应用,从而构建更加健壮和可... 目录引言一、Spring Validation基础架构1.1 jsR-380标准与Spring整合1

MySQL 中查询 VARCHAR 类型 JSON 数据的问题记录

《MySQL中查询VARCHAR类型JSON数据的问题记录》在数据库设计中,有时我们会将JSON数据存储在VARCHAR或TEXT类型字段中,本文将详细介绍如何在MySQL中有效查询存储为V... 目录一、问题背景二、mysql jsON 函数2.1 常用 JSON 函数三、查询示例3.1 基本查询3.2