windows上使用anconda安装tensorrt环境

2024-01-26 23:36

本文主要是介绍windows上使用anconda安装tensorrt环境,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

windows上使用anconda安装tensorrt环境

    • 1 安装tensorrt
      • 1.1 下载最新的稳定的tensorrt 8.6.1(tensorrt对应的cuda、cudnn等版本是参考链接4)
      • 1.2 将tensorrt添加到环境变量
      • 1.3 安装tensorrt依赖
      • 1.4 安装Pycuda
      • 1.5 安装pytorch
    • 2 测试
      • 2.1 测试TensorRT 样例(这个测试主要来源于参考链接1)
      • 2.2 测试trtexec是否可以使用(这个测试主要来源于参考链接2)
        • 2.2.1 生成pytorch模型
        • 2.2.2 将pytorch模型转化为onnx
        • 2.2.3 将ONNX格式转成TensorRT格式
        • 2.2.4 测试生成的tensorrt模型
    • 3 容易出现的问题
      • 3.1 cuda 和 tensorrt 版本不匹配的问题
      • 3.2 出现编译和加载时不是同一个cuda cuBLAS/cuBLAS
    • 4 参考链接

本次使用的window环境是win 11,windows环境安装cuda(cuda版本为11.6.2)和cudnn(cudnn版本为8.8.0其实应该下载8.9.0tensorrt 8.6.1对应的cudnn版本是8.9.0,如下图1),anconda的安装就不用介绍了,如果不会安装,可以参考这篇文章
在这里插入图片描述 图 1 图1 1

1 安装tensorrt

1.1 下载最新的稳定的tensorrt 8.6.1(tensorrt对应的cuda、cudnn等版本是参考链接4)

从nvidia官方文件中可以看出,在windows上安装tensorrt只能通过Zip File Installation这个安装方式来进行安装。

  • 首先前往tensorrt官网下载,登录会出现不同版本的tensorrt资源,如图2,点击TensorRT 8
    在这里插入图片描述 图 2 图2 2
  • 然后,直接下载下图3中的TensorRT 8.6 GA for Windows 10 and CUDA 11.0, 11.1, 11.2, 11.3, 11.4, 11.5, 11.6, 11.7 and 11.8 ZIP Package
    在这里插入图片描述 图 3 图3 3

1.2 将tensorrt添加到环境变量

  • 下载完毕后,将其解压,并且进入lib子文件夹,如下图4所示,将路径D:\TensorRT-8.6.1.6\lib添加到系统环境变量中。
    在这里插入图片描述 图 4 图4 4

1.3 安装tensorrt依赖

创建一个anconda环境,python版本为python==3.10.12

conda create -n tensorrt python==3.10.12

激活环境

activate tensorrt

进入刚才解压后的TensorRT文件夹内的python子目录,根据python版本选择好对用的whl文件,如下图5所示,并执行下面代码

pip install D:\TensorRT-8.6.1.6\python\tensorrt-8.6.1-cp310-none-win_amd64.whl

在这里插入图片描述 图 5 图5 5上面代码执行结果如下所示

C:\Users\Administrator>conda create -n tensorrt python==3.10.12
Collecting package metadata (current_repodata.json): done
Solving environment: unsuccessful attempt using repodata from current_repodata.json, retrying with next repodata source.
Collecting package metadata (repodata.json): done
Solving environment: done

1.4 安装Pycuda

前往下载Pycuda的网站,找到Pycuda,并点击Pycuda,就会跳到下图6下载Pycuda版本的网站,然后下载pycuda‑2022.1+cuda116‑cp310‑cp310‑win_amd64.whl
在这里插入图片描述 图 6 图6 6进入tensorrt的conda虚拟环境,输入以下代码指令安装Pycuda

pip install C:\Users\Administrator\Downloads\pycuda‑2022.1+cuda116‑cp310‑cp310‑win_amd64.whl

执行结果如下所示,就代表成功了

(tensorrt) C:\Users\Administrator>pip install C:\Users\Administrator\Downloads\pycuda-2022.1+cuda116-cp310-cp310-win_amd64.whl
Looking in indexes: https://pypi.org/simple, https://pypi.ngc.nvidia.com
Processing c:\users\administrator\downloads\pycuda-2022.1+cuda116-cp310-cp310-win_amd64.whl
Collecting pytools>=2011.2 (from pycuda==2022.1+cuda116)Downloading pytools-2023.1.1-py2.py3-none-any.whl.metadata (2.7 kB)
Collecting appdirs>=1.4.0 (from pycuda==2022.1+cuda116)Downloading appdirs-1.4.4-py2.py3-none-any.whl (9.6 kB)
Collecting mako (from pycuda==2022.1+cuda116)Downloading Mako-1.3.0-py3-none-any.whl.metadata (2.9 kB)
Requirement already satisfied: platformdirs>=2.2.0 in c:\users\administrator\appdata\roaming\python\python310\site-packages (from pytools>=2011.2->pycuda==2022.1+cuda116) (4.1.0)
Collecting typing-extensions>=4.0 (from pytools>=2011.2->pycuda==2022.1+cuda116)Downloading typing_extensions-4.9.0-py3-none-any.whl.metadata (3.0 kB)
Collecting MarkupSafe>=0.9.2 (from mako->pycuda==2022.1+cuda116)Downloading MarkupSafe-2.1.4-cp310-cp310-win_amd64.whl.metadata (3.1 kB)
Downloading pytools-2023.1.1-py2.py3-none-any.whl (70 kB)---------------------------------------- 70.6/70.6 kB 256.7 kB/s eta 0:00:00
Downloading Mako-1.3.0-py3-none-any.whl (78 kB)---------------------------------------- 78.6/78.6 kB 1.5 MB/s eta 0:00:00
Downloading MarkupSafe-2.1.4-cp310-cp310-win_amd64.whl (17 kB)
Downloading typing_extensions-4.9.0-py3-none-any.whl (32 kB)
Installing collected packages: appdirs, typing-extensions, MarkupSafe, pytools, mako, pycuda
Successfully installed MarkupSafe-2.1.4 appdirs-1.4.4 mako-1.3.0 pycuda-2022.1+cuda116 pytools-2023.1.1 typing-extensions-4.9.0

1.5 安装pytorch

进入tensorrt虚拟环境中,安装pytorch,注意这个安装pytorch,一定要使用pip的方式安装,不要使用conda的方式安装

pip install torch==1.13.1+cu116 torchvision==0.14.1+cu116 torchaudio==0.13.1 --extra-index-url https://download.pytorch.org/whl/cu116

安装成功后,可以查看pytorch的cuda是不是可以用

import torch
torch.cuda.is_available()  # 为True则可以用

2 测试

2.1 测试TensorRT 样例(这个测试主要来源于参考链接1)

tensorrt官方提供了可供测试的样例,进入刚才下载好的tensorrt文件夹下面的samples\python\network_api_pytorch_mnist目录下,这里我们选择一个手写数字识别的示例,如下图7所示。
在这里插入图片描述 图 7 图7 7拷贝路径,在tensorrt的虚拟环境下,cd 此路径,然后输入如下指令

python sample.py

执行结果如下,就代表成功了

(tensorrt) D:\TensorRT-8.6.1.6\samples\python\network_api_pytorch_mnist>python sample.py
Train Epoch: 1 [0/60000 (0%)]   Loss: 2.292776
Train Epoch: 1 [6400/60000 (11%)]       Loss: 0.694761
Train Epoch: 1 [12800/60000 (21%)]      Loss: 0.316812
Train Epoch: 1 [19200/60000 (32%)]      Loss: 0.101704
Train Epoch: 1 [25600/60000 (43%)]      Loss: 0.087654
Train Epoch: 1 [32000/60000 (53%)]      Loss: 0.230672
Train Epoch: 1 [38400/60000 (64%)]      Loss: 0.189763
Train Epoch: 1 [44800/60000 (75%)]      Loss: 0.157570
Train Epoch: 1 [51200/60000 (85%)]      Loss: 0.043530
Train Epoch: 1 [57600/60000 (96%)]      Loss: 0.107672Test set: Average loss: 0.0927, Accuracy: 9732/10000 (97%)Train Epoch: 2 [0/60000 (0%)]   Loss: 0.049581
Train Epoch: 2 [6400/60000 (11%)]       Loss: 0.063095
Train Epoch: 2 [12800/60000 (21%)]      Loss: 0.086241
Train Epoch: 2 [19200/60000 (32%)]      Loss: 0.100145
Train Epoch: 2 [25600/60000 (43%)]      Loss: 0.087662
Train Epoch: 2 [32000/60000 (53%)]      Loss: 0.064293
Train Epoch: 2 [38400/60000 (64%)]      Loss: 0.053872
Train Epoch: 2 [44800/60000 (75%)]      Loss: 0.153787
Train Epoch: 2 [51200/60000 (85%)]      Loss: 0.065774
Train Epoch: 2 [57600/60000 (96%)]      Loss: 0.067333Test set: Average loss: 0.0520, Accuracy: 9835/10000 (98%)[01/26/2024-20:43:07] [TRT] [W] CUDA lazy loading is not enabled. Enabling it can significantly reduce device memory usage and speed up TensorRT initialization. See "Lazy Loading" section of CUDA documentation https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#lazy-loading
D:\TensorRT-8.6.1.6\samples\python\network_api_pytorch_mnist\sample.py:112: DeprecationWarning: Use set_memory_pool_limit instead.config.max_workspace_size = common.GiB(1)
D:\TensorRT-8.6.1.6\samples\python\network_api_pytorch_mnist\sample.py:75: DeprecationWarning: Use add_convolution_nd instead.conv1 = network.add_convolution(
D:\TensorRT-8.6.1.6\samples\python\network_api_pytorch_mnist\sample.py:78: DeprecationWarning: Use stride_nd instead.conv1.stride = (1, 1)
D:\TensorRT-8.6.1.6\samples\python\network_api_pytorch_mnist\sample.py:80: DeprecationWarning: Use add_pooling_nd instead.pool1 = network.add_pooling(input=conv1.get_output(0), type=trt.PoolingType.MAX, window_size=(2, 2))
D:\TensorRT-8.6.1.6\samples\python\network_api_pytorch_mnist\sample.py:81: DeprecationWarning: Use stride_nd instead.pool1.stride = (2, 2)
D:\TensorRT-8.6.1.6\samples\python\network_api_pytorch_mnist\sample.py:85: DeprecationWarning: Use add_convolution_nd instead.conv2 = network.add_convolution(pool1.get_output(0), 50, (5, 5), conv2_w, conv2_b)
D:\TensorRT-8.6.1.6\samples\python\network_api_pytorch_mnist\sample.py:86: DeprecationWarning: Use stride_nd instead.conv2.stride = (1, 1)
D:\TensorRT-8.6.1.6\samples\python\network_api_pytorch_mnist\sample.py:88: DeprecationWarning: Use add_pooling_nd instead.pool2 = network.add_pooling(conv2.get_output(0), trt.PoolingType.MAX, (2, 2))
D:\TensorRT-8.6.1.6\samples\python\network_api_pytorch_mnist\sample.py:89: DeprecationWarning: Use stride_nd instead.pool2.stride = (2, 2)
[01/26/2024-20:43:11] [TRT] [W] CUDA lazy loading is not enabled. Enabling it can significantly reduce device memory usage and speed up TensorRT initialization. See "Lazy Loading" section of CUDA documentation https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#lazy-loading
Test Case: 2
Prediction: 2

2.2 测试trtexec是否可以使用(这个测试主要来源于参考链接2)

2.2.1 生成pytorch模型

使用pytorch官方提供的resnet34训练flower数据集,得到pytorch模型,代码来源https://github.com/WZMIAOMIAO/deep-learning-for-image-processing/tree/master/pytorch_classification/Test5_resnet,flower数据集的来源也是这个链接的上一文件的readme.md,训练完成后,会得到resNet34.pth,如下图8所示
在这里插入图片描述 图 8 图8 8

2.2.2 将pytorch模型转化为onnx

这里就是以Pytorch官方提供的ResNet34为例(也就是上面代码训练好的resNet34.pth),直接从torchvision中实例化ResNet34并载入自己在flower_photos数据集上训练好的权重,然后在转成ONNX格式,示例代码如下:

import torch
import torch.onnx
import onnx
import onnxruntime
import numpy as np
from torchvision.models import resnet34device = torch.device("cpu")def to_numpy(tensor):return tensor.detach().cpu().numpy() if tensor.requires_grad else tensor.cpu().numpy()def main():weights_path = "resNet34.pth"onnx_file_name = "resnet34.onnx"batch_size = 1img_h = 224img_w = 224img_channel = 3# create model and load pretrain weightsmodel = resnet34(pretrained=False, num_classes=5)model.load_state_dict(torch.load(weights_path, map_location='cpu'))model.eval()# input to the model# [batch, channel, height, width]x = torch.rand(batch_size, img_channel, img_h, img_w, requires_grad=True)torch_out = model(x)# export the modeltorch.onnx.export(model,             # model being runx,                 # model input (or a tuple for multiple inputs)onnx_file_name,    # where to save the model (can be a file or file-like object)input_names=["input"],output_names=["output"],verbose=False)# check onnx modelonnx_model = onnx.load(onnx_file_name)onnx.checker.check_model(onnx_model)ort_session = onnxruntime.InferenceSession(onnx_file_name)# compute ONNX Runtime output predictionort_inputs = {ort_session.get_inputs()[0].name: to_numpy(x)}ort_outs = ort_session.run(None, ort_inputs)# compare ONNX Runtime and Pytorch results# assert_allclose: Raises an AssertionError if two objects are not equal up to desired tolerance.np.testing.assert_allclose(to_numpy(torch_out), ort_outs[0], rtol=1e-03, atol=1e-05)print("Exported model has been tested with ONNXRuntime, and the result looks good!")if __name__ == '__main__':main()

在运行上面代码之前,还得在tensorrt虚拟环境中安装onnx(onnx==1.12.0)和onnxruntime(onnxruntime==1.12.0)(onnx和onnxruntime的版本对应关系可以参考这个链接,当然如果要查看最新的版本的,可以直接google哦)

pip install onnx==1.12.0
pip install onnxruntime==1.12.0

注意,这里将Pytorch模型转成ONNX后,又利用ONNXRUNTIME载入导出的模型,然后输入同样的数据利用np.testing.assert_allclose方法对比转换前后输出的差异,其中rtol代表相对偏差,atol代表绝对偏差,如果两者的差异超出指定的精度则会报错。在转换后,会在当前文件夹中生成一个resnet34.onnx文件。

2.2.3 将ONNX格式转成TensorRT格式

将ONNX转成TensorRT engine的方式有多种,其中最简单的就是使用trtexec工具。在上面2.2.2章节中已经将Pyotrch中的Resnet34转成ONNX格式了,接下来可以直接使用trtexec工具将其转为TensorRT engine格式:

trtexec --onnx=resnet34.onnx --saveEngine=trt_output/resnet34.trt

其中:

  • –onnx是指向生成的onnx模型文件路径
  • –saveEngine是保存TensorRT engine的文件路径(发现一个小问题,就是保存的目录必须提前创建好,如果没有创建的话就会报错)

在进行trtexec之前,还需要将trtexec.exeD:\TensorRT-8.6.1.6\bin添加到环境变量中,具体得添加过程就不赘述了,需要添加得路径如下图9所示
在这里插入图片描述 图 9 图9 9添加环境变量后,如果使用VScode,请务必将VScode关闭后,在再次打开在上述终端中执行指令;也可以通过win 11自带的cmd窗口执行上述命令,两种方法的都可以,执行结果如下所示:

(tensorrt) C:\Users\Administrator\Desktop\resnet>trtexec --onnx=resnet34.onnx --saveEngine=trt_output/resnet34.trt
&&&& RUNNING TensorRT.trtexec [TensorRT v8601] # trtexec --onnx=resnet34.onnx --saveEngine=trt_output/resnet34.trt
[01/26/2024-22:16:49] [I] === Model Options ===
[01/26/2024-22:16:49] [I] Format: ONNX
[01/26/2024-22:16:49] [I] Model: resnet34.onnx
[01/26/2024-22:16:49] [I] Output:
[01/26/2024-22:16:49] [I] === Build Options ===
[01/26/2024-22:16:49] [I] Max batch: explicit batch
[01/26/2024-22:16:49] [I] Memory Pools: workspace: default, dlaSRAM: default, dlaLocalDRAM: default, dlaGlobalDRAM: default
[01/26/2024-22:16:49] [I] minTiming: 1
[01/26/2024-22:16:49] [I] avgTiming: 8
[01/26/2024-22:16:49] [I] Precision: FP32
[01/26/2024-22:16:49] [I] LayerPrecisions:
[01/26/2024-22:16:49] [I] Layer Device Types:
[01/26/2024-22:16:49] [I] Calibration:
[01/26/2024-22:16:49] [I] Refit: Disabled
[01/26/2024-22:16:49] [I] Version Compatible: Disabled
[01/26/2024-22:16:49] [I] TensorRT runtime: full
[01/26/2024-22:16:49] [I] Lean DLL Path:
[01/26/2024-22:16:49] [I] Tempfile Controls: { in_memory: allow, temporary: allow }
[01/26/2024-22:16:49] [I] Exclude Lean Runtime: Disabled
[01/26/2024-22:16:49] [I] Sparsity: Disabled
[01/26/2024-22:16:49] [I] Safe mode: Disabled
[01/26/2024-22:16:49] [I] Build DLA standalone loadable: Disabled
[01/26/2024-22:16:49] [I] Allow GPU fallback for DLA: Disabled
[01/26/2024-22:16:49] [I] DirectIO mode: Disabled
[01/26/2024-22:16:49] [I] Restricted mode: Disabled
[01/26/2024-22:16:49] [I] Skip inference: Disabled
[01/26/2024-22:16:49] [I] Save engine: trt_output/resnet34.trt
[01/26/2024-22:16:49] [I] Load engine:
[01/26/2024-22:16:49] [I] Profiling verbosity: 0
[01/26/2024-22:16:49] [I] Tactic sources: Using default tactic sources
[01/26/2024-22:16:49] [I] timingCacheMode: local
[01/26/2024-22:16:49] [I] timingCacheFile:
[01/26/2024-22:16:49] [I] Heuristic: Disabled
[01/26/2024-22:16:49] [I] Preview Features: Use default preview flags.
[01/26/2024-22:16:49] [I] MaxAuxStreams: -1
[01/26/2024-22:16:49] [I] BuilderOptimizationLevel: -1
[01/26/2024-22:16:49] [I] Input(s)s format: fp32:CHW
[01/26/2024-22:16:49] [I] Output(s)s format: fp32:CHW
[01/26/2024-22:16:49] [I] Input build shapes: model
[01/26/2024-22:16:49] [I] Input calibration shapes: model
[01/26/2024-22:16:49] [I] === System Options ===
......
[01/26/2024-22:17:07] [I] Average on 10 runs - GPU latency: 2.13367 ms - Host latency: 2.35083 ms (enqueue 0.329321 ms)
[01/26/2024-22:17:07] [I]
[01/26/2024-22:17:07] [I] === Performance summary ===
[01/26/2024-22:17:07] [I] Throughput: 408.164 qps
[01/26/2024-22:17:07] [I] Latency: min = 2.1969 ms, max = 11.5844 ms, mean = 2.34914 ms, median = 2.26282 ms, percentile(90%) = 2.5896 ms, percentile(95%) = 2.74451 ms, percentile(99%) = 3.15137 ms
[01/26/2024-22:17:07] [I] Enqueue Time: min = 0.214111 ms, max = 11.3787 ms, mean = 0.462134 ms, median = 0.360229 ms, percentile(90%) = 0.757202 ms, percentile(95%) = 0.912842 ms, percentile(99%) = 1.60339 ms
[01/26/2024-22:17:07] [I] H2D Latency: min = 0.20166 ms, max = 0.341309 ms, mean = 0.229284 ms, median = 0.223328 ms, percentile(90%) = 0.264771 ms, percentile(95%) = 0.274536 ms, percentile(99%) = 0.304443 ms
[01/26/2024-22:17:07] [I] GPU Compute Time: min = 1.9906 ms, max = 11.3264 ms, mean = 2.11385 ms, median = 2.0265 ms, percentile(90%) = 2.33765 ms, percentile(95%) = 2.4895 ms, percentile(99%) = 2.89893 ms
[01/26/2024-22:17:07] [I] D2H Latency: min = 0.00415039 ms, max = 0.0593262 ms, mean = 0.00600404 ms, median = 0.00463867 ms, percentile(90%) = 0.0119629 ms, percentile(95%) = 0.0145569 ms, percentile(99%) = 0.0292969 ms
[01/26/2024-22:17:07] [I] Total Host Walltime: 3.0037 s
[01/26/2024-22:17:07] [I] Total GPU Compute Time: 2.59158 s
[01/26/2024-22:17:07] [W] * GPU compute time is unstable, with coefficient of variance = 15.3755%.
[01/26/2024-22:17:07] [W]   If not already in use, locking GPU clock frequency or adding --useSpinWait may improve the stability.
[01/26/2024-22:17:07] [I] Explanations of the performance metrics are printed in the verbose logs.
[01/26/2024-22:17:07] [I]
&&&& PASSED TensorRT.trtexec [TensorRT v8601] # trtexec --onnx=resnet34.onnx --saveEngine=trt_output/resnet34.trt

执行结果生成的trt模型如下图10所示:
在这里插入图片描述 图 10 图10 10

2.2.4 测试生成的tensorrt模型

这个测试demo是参考链接2写的,在样例中对比ONNX和TensorRT的输出结果:

import numpy as np
import tensorrt as trt
import onnxruntime
import pycuda.driver as cuda
import pycuda.autoinitdef normalize(image: np.ndarray) -> np.ndarray:"""Normalize the image to the given mean and standard deviation"""image = image.astype(np.float32)mean = (0.485, 0.456, 0.406)std = (0.229, 0.224, 0.225)image /= 255.0image -= meanimage /= stdreturn imagedef onnx_inference(onnx_path: str, image: np.ndarray):# load onnx modelort_session = onnxruntime.InferenceSession(onnx_path)# compute onnx Runtime output predictionort_inputs = {ort_session.get_inputs()[0].name: image}res_onnx = ort_session.run(None, ort_inputs)[0]return res_onnxdef trt_inference(trt_path: str, image: np.ndarray):# Load the network in Inference Enginetrt_logger = trt.Logger(trt.Logger.WARNING)with open(trt_path, "rb") as f, trt.Runtime(trt_logger) as runtime:engine = runtime.deserialize_cuda_engine(f.read())with engine.create_execution_context() as context:# Set input shape based on image dimensions for inferencecontext.set_binding_shape(engine.get_binding_index("input"), (1, 3, image.shape[-2], image.shape[-1]))# Allocate host and device buffersbindings = []for binding in engine:binding_idx = engine.get_binding_index(binding)size = trt.volume(context.get_binding_shape(binding_idx))dtype = trt.nptype(engine.get_binding_dtype(binding))if engine.binding_is_input(binding):input_buffer = np.ascontiguousarray(image)input_memory = cuda.mem_alloc(image.nbytes)bindings.append(int(input_memory))else:output_buffer = cuda.pagelocked_empty(size, dtype)output_memory = cuda.mem_alloc(output_buffer.nbytes)bindings.append(int(output_memory))stream = cuda.Stream()# Transfer input data to the GPU.cuda.memcpy_htod_async(input_memory, input_buffer, stream)# Run inferencecontext.execute_async_v2(bindings=bindings, stream_handle=stream.handle)# Transfer prediction output from the GPU.cuda.memcpy_dtoh_async(output_buffer, output_memory, stream)# Synchronize the streamstream.synchronize()res_trt = np.reshape(output_buffer, (1, -1))return res_trtdef main():image_h = 224image_w = 224onnx_path = "resnet34.onnx"trt_path = "trt_output/resnet34.trt"image = np.random.randn(image_h, image_w, 3)normalized_image = normalize(image)# Convert the resized images to network input shape# [h, w, c] -> [c, h, w] -> [1, c, h, w]normalized_image = np.expand_dims(np.transpose(normalized_image, (2, 0, 1)), 0)onnx_res = onnx_inference(onnx_path, normalized_image)ir_res = trt_inference(trt_path, normalized_image)np.testing.assert_allclose(onnx_res, ir_res, rtol=1e-03, atol=1e-05)print("Exported model has been tested with TensorRT Runtime, and the result looks good!")if __name__ == '__main__':main()

执行结果如下:

(tensorrt) C:\Users\Administrator\Desktop\resnet>C:/ProgramData/anaconda3/envs/tensorrt/python.exe c:/Users/Administrator/Desktop/resnet/demo.py
[01/26/2024-22:19:08] [TRT] [W] CUDA lazy loading is not enabled. Enabling it can significantly reduce device memory usage and speed up TensorRT initialization. See "Lazy Loading" section of CUDA documentation https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#lazy-loading
c:\Users\Administrator\Desktop\resnet\demo.py:39: DeprecationWarning: Use get_tensor_name instead.context.set_binding_shape(engine.get_binding_index("input"), (1, 3, image.shape[-2], image.shape[-1]))
c:\Users\Administrator\Desktop\resnet\demo.py:39: DeprecationWarning: Use set_input_shape instead.context.set_binding_shape(engine.get_binding_index("input"), (1, 3, image.shape[-2], image.shape[-1]))
c:\Users\Administrator\Desktop\resnet\demo.py:43: DeprecationWarning: Use get_tensor_name instead.binding_idx = engine.get_binding_index(binding)
c:\Users\Administrator\Desktop\resnet\demo.py:44: DeprecationWarning: Use get_tensor_shape instead.size = trt.volume(context.get_binding_shape(binding_idx))
c:\Users\Administrator\Desktop\resnet\demo.py:45: DeprecationWarning: Use get_tensor_dtype instead.dtype = trt.nptype(engine.get_binding_dtype(binding))
c:\Users\Administrator\Desktop\resnet\demo.py:46: DeprecationWarning: Use get_tensor_mode instead.if engine.binding_is_input(binding):
Exported model has been tested with TensorRT Runtime, and the result looks good!

这个结果已经是成功了,只不过里面还有一些瑕疵,如结果中提到的CUDA lazy loading is not enabled的问题,可以使用在win 11的系统变量中添加变量名为CUDA_MODULE_LOADING和变量值为LAZY,如下图11所示:
在这里插入图片描述 图 11 图11 11添加之后,再次执行代码,得到结果,可以看出,上面的CUDA lazy loading is not enabled的问题已经解决了,剩下的问题原因就是tensorrt的版本为最新的8.6.1,这个测试demo是来源于参考链接2,使用的tensorrt版本为8.2.5,8.2.5中的很多API接口在8.6.1中更新了,都已经需要被8.6.1中的代替,这个就不解决了。

(tensorrt) C:\Users\Administrator\Desktop\resnet>C:/ProgramData/anaconda3/envs/tensorrt/python.exe c:/Users/Administrator/Desktop/resnet/demo.py
c:\Users\Administrator\Desktop\resnet\demo.py:39: DeprecationWarning: Use get_tensor_name instead.context.set_binding_shape(engine.get_binding_index("input"), (1, 3, image.shape[-2], image.shape[-1]))
c:\Users\Administrator\Desktop\resnet\demo.py:39: DeprecationWarning: Use set_input_shape instead.context.set_binding_shape(engine.get_binding_index("input"), (1, 3, image.shape[-2], image.shape[-1]))
c:\Users\Administrator\Desktop\resnet\demo.py:43: DeprecationWarning: Use get_tensor_name instead.binding_idx = engine.get_binding_index(binding)
c:\Users\Administrator\Desktop\resnet\demo.py:44: DeprecationWarning: Use get_tensor_shape instead.size = trt.volume(context.get_binding_shape(binding_idx))
c:\Users\Administrator\Desktop\resnet\demo.py:45: DeprecationWarning: Use get_tensor_dtype instead.dtype = trt.nptype(engine.get_binding_dtype(binding))
c:\Users\Administrator\Desktop\resnet\demo.py:46: DeprecationWarning: Use get_tensor_mode instead.if engine.binding_is_input(binding):
Exported model has been tested with TensorRT Runtime, and the result looks good!

3 容易出现的问题

3.1 cuda 和 tensorrt 版本不匹配的问题

这个问题可能会导致在执行2.2测试的时候出现退出程序的问题,在断点调试的时候,应该会出现下面的问题,尽可能的让cuda和tensorrt的版本一致

trt.volume(context.get_binding_shape(binding_idx))
[WinError 10054] 远程主机强迫关闭了一个现有的连接。

3.2 出现编译和加载时不是同一个cuda cuBLAS/cuBLAS

即是下面的问题

[TRT] TensorRT was linked against cuBLAS/cuBLAS LT 11.6.3 but loaded cuBLAS/cuBLAS LT 11.5.1

最终要的解决方法前面已经提到过,就是anconda创建的虚拟环境tensorrt一定要使用pip安装pytorch,如果使用conda的方法安装pytorch,tensorrt会自动安装cudatoolkit,这可能会导致与win 11环境中安装的cuda版本不一致,导致出现上面的问题。
当然,如果不是上一段话引起的问题,使用pip的方法解决不了的话,可以阅读这一篇文章和这一篇文章。

4 参考链接

  1. TensorRT(一)Windows+Anaconda配置TensorRT环境 (Python版 )
  2. TensorRT安装记录(8.2.5)
  3. TensorRT的支持的cuda、cudnn等环境版本

这篇关于windows上使用anconda安装tensorrt环境的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/648392

相关文章

Zookeeper安装和配置说明

一、Zookeeper的搭建方式 Zookeeper安装方式有三种,单机模式和集群模式以及伪集群模式。 ■ 单机模式:Zookeeper只运行在一台服务器上,适合测试环境; ■ 伪集群模式:就是在一台物理机上运行多个Zookeeper 实例; ■ 集群模式:Zookeeper运行于一个集群上,适合生产环境,这个计算机集群被称为一个“集合体”(ensemble) Zookeeper通过复制来实现

CentOS7安装配置mysql5.7 tar免安装版

一、CentOS7.4系统自带mariadb # 查看系统自带的Mariadb[root@localhost~]# rpm -qa|grep mariadbmariadb-libs-5.5.44-2.el7.centos.x86_64# 卸载系统自带的Mariadb[root@localhost ~]# rpm -e --nodeps mariadb-libs-5.5.44-2.el7

Centos7安装Mongodb4

1、下载源码包 curl -O https://fastdl.mongodb.org/linux/mongodb-linux-x86_64-rhel70-4.2.1.tgz 2、解压 放到 /usr/local/ 目录下 tar -zxvf mongodb-linux-x86_64-rhel70-4.2.1.tgzmv mongodb-linux-x86_64-rhel70-4.2.1/

中文分词jieba库的使用与实景应用(一)

知识星球:https://articles.zsxq.com/id_fxvgc803qmr2.html 目录 一.定义: 精确模式(默认模式): 全模式: 搜索引擎模式: paddle 模式(基于深度学习的分词模式): 二 自定义词典 三.文本解析   调整词出现的频率 四. 关键词提取 A. 基于TF-IDF算法的关键词提取 B. 基于TextRank算法的关键词提取

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

Hadoop数据压缩使用介绍

一、压缩原则 (1)运算密集型的Job,少用压缩 (2)IO密集型的Job,多用压缩 二、压缩算法比较 三、压缩位置选择 四、压缩参数配置 1)为了支持多种压缩/解压缩算法,Hadoop引入了编码/解码器 2)要在Hadoop中启用压缩,可以配置如下参数

Makefile简明使用教程

文章目录 规则makefile文件的基本语法:加在命令前的特殊符号:.PHONY伪目标: Makefilev1 直观写法v2 加上中间过程v3 伪目标v4 变量 make 选项-f-n-C Make 是一种流行的构建工具,常用于将源代码转换成可执行文件或者其他形式的输出文件(如库文件、文档等)。Make 可以自动化地执行编译、链接等一系列操作。 规则 makefile文件

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

Centos7安装JDK1.8保姆版

工欲善其事,必先利其器。这句话同样适用于学习Java编程。在开始Java的学习旅程之前,我们必须首先配置好适合的开发环境。 通过事先准备好这些工具和配置,我们可以避免在学习过程中遇到因环境问题导致的代码异常或错误。一个稳定、高效的开发环境能够让我们更加专注于代码的学习和编写,提升学习效率,减少不必要的困扰和挫折感。因此,在学习Java之初,投入一些时间和精力来配置好开发环境是非常值得的。这将为我

阿里开源语音识别SenseVoiceWindows环境部署

SenseVoice介绍 SenseVoice 专注于高精度多语言语音识别、情感辨识和音频事件检测多语言识别: 采用超过 40 万小时数据训练,支持超过 50 种语言,识别效果上优于 Whisper 模型。富文本识别:具备优秀的情感识别,能够在测试数据上达到和超过目前最佳情感识别模型的效果。支持声音事件检测能力,支持音乐、掌声、笑声、哭声、咳嗽、喷嚏等多种常见人机交互事件进行检测。高效推