人脸识别 FaceNet人脸识别(一种人脸识别与聚类的统一嵌入表示)

2024-01-26 21:04

本文主要是介绍人脸识别 FaceNet人脸识别(一种人脸识别与聚类的统一嵌入表示),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

人脸识别 FaceNet人脸识别(一种人脸识别与聚类的统一嵌入表示)

  • FaceNet的简介
  • Facenet的实现思路
  • 训练部分

在这里插入图片描述

FaceNet的简介

在这里插入图片描述

Facenet的实现思路

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

import torch.nn as nndef conv_bn(inp, oup, stride = 1):return nn.Sequential(nn.Conv2d(inp, oup, 3, stride, 1, bias=False),nn.BatchNorm2d(oup),nn.ReLU6())def conv_dw(inp, oup, stride = 1):return nn.Sequential(nn.Conv2d(inp, inp, 3, stride, 1, groups=inp, bias=False),nn.BatchNorm2d(inp),nn.ReLU6(),nn.Conv2d(inp, oup, 1, 1, 0, bias=False),nn.BatchNorm2d(oup),nn.ReLU6(),)class MobileNetV1(nn.Module):def __init__(self):super(MobileNetV1, self).__init__()self.stage1 = nn.Sequential(# 160,160,3 -> 80,80,32conv_bn(3, 32, 2), # 80,80,32 -> 80,80,64conv_dw(32, 64, 1), # 80,80,64 -> 40,40,128conv_dw(64, 128, 2),conv_dw(128, 128, 1),# 40,40,128 -> 20,20,256conv_dw(128, 256, 2),conv_dw(256, 256, 1),)self.stage2 = nn.Sequential(# 20,20,256 -> 10,10,512conv_dw(256, 512, 2),conv_dw(512, 512, 1),conv_dw(512, 512, 1),conv_dw(512, 512, 1),conv_dw(512, 512, 1),conv_dw(512, 512, 1),)self.stage3 = nn.Sequential(# 10,10,512 -> 5,5,1024conv_dw(512, 1024, 2),conv_dw(1024, 1024, 1),)self.avg = nn.AdaptiveAvgPool2d((1,1))self.fc = nn.Linear(1024, 1000)def forward(self, x):x = self.stage1(x)x = self.stage2(x)x = self.stage3(x)x = self.avg(x)# x = self.model(x)x = x.view(-1, 1024)x = self.fc(x)return x

在这里插入图片描述

class Facenet(nn.Module):def __init__(self, backbone="mobilenet", dropout_keep_prob=0.5, embedding_size=128, num_classes=None, mode="train"):  super(Facenet, self).__init__()if backbone == "mobilenet":self.backbone = mobilenet()flat_shape = 1024elif backbone == "inception_resnetv1":self.backbone = inception_resnet()flat_shape = 1792else:raise ValueError('Unsupported backbone - `{}`, Use mobilenet, inception_resnetv1.'.format(backbone))self.avg = nn.AdaptiveAvgPool2d((1,1))self.Dropout = nn.Dropout(1 - dropout_keep_prob)self.Bottleneck = nn.Linear(flat_shape, embedding_size,bias=False)self.last_bn = nn.BatchNorm1d(embedding_size, eps=0.001, momentum=0.1, affine=True)if mode == "train":self.classifier = nn.Linear(embedding_size, num_classes)def forward(self, x):x = self.backbone(x)x = self.avg(x)x = x.view(x.size(0), -1)x = self.Dropout(x)x = self.Bottleneck(x)x = self.last_bn(x)x = F.normalize(x, p=2, dim=1)return xdef forward_feature(self, x):x = self.backbone(x)x = self.avg(x)x = x.view(x.size(0), -1)x = self.Dropout(x)x = self.Bottleneck(x)before_normalize = self.last_bn(x)x = F.normalize(before_normalize, p=2, dim=1)return before_normalize, xdef forward_classifier(self, x):x = self.classifier(x)return x

在这里插入图片描述
在pytorch代码中,只需要一行就可以实现l2标准化的层。
在这里插入图片描述

class Facenet(nn.Module):def __init__(self, backbone="mobilenet", dropout_keep_prob=0.5, embedding_size=128, num_classes=None, mode="train"): super(Facenet, self).__init__()if backbone == "mobilenet":self.backbone = mobilenet()flat_shape = 1024elif backbone == "inception_resnetv1":self.backbone = inception_resnet()flat_shape = 1792else:raise ValueError('Unsupported backbone - `{}`, Use mobilenet, inception_resnetv1.'.format(backbone))self.avg = nn.AdaptiveAvgPool2d((1,1))self.Dropout = nn.Dropout(1 - dropout_keep_prob)self.Bottleneck = nn.Linear(flat_shape, embedding_size,bias=False)self.last_bn = nn.BatchNorm1d(embedding_size, eps=0.001, momentum=0.1, affine=True)if mode == "train":self.classifier = nn.Linear(embedding_size, num_classes)def forward(self, x):x = self.backbone(x)x = self.avg(x)x = x.view(x.size(0), -1)x = self.Dropout(x)x = self.Bottleneck(x)x = self.last_bn(x)x = F.normalize(x, p=2, dim=1)return xdef forward_feature(self, x):x = self.backbone(x)x = self.avg(x)x = x.view(x.size(0), -1)x = self.Dropout(x)x = self.Bottleneck(x)before_normalize = self.last_bn(x)x = F.normalize(before_normalize, p=2, dim=1)return before_normalize, xdef forward_classifier(self, x):x = self.classifier(x)return x

在这里插入图片描述

class Facenet(nn.Module):def __init__(self, backbone="mobilenet", dropout_keep_prob=0.5, embedding_size=128, num_classes=None, mode="train"):super(Facenet, self).__init__()if backbone == "mobilenet":self.backbone = mobilenet()flat_shape = 1024elif backbone == "inception_resnetv1":self.backbone = inception_resnet()flat_shape = 1792else:raise ValueError('Unsupported backbone - `{}`, Use mobilenet, inception_resnetv1.'.format(backbone))self.avg = nn.AdaptiveAvgPool2d((1,1))self.Dropout = nn.Dropout(1 - dropout_keep_prob)self.Bottleneck = nn.Linear(flat_shape, embedding_size,bias=False)self.last_bn = nn.BatchNorm1d(embedding_size, eps=0.001, momentum=0.1, affine=True)if mode == "train":self.classifier = nn.Linear(embedding_size, num_classes)def forward(self, x):x = self.backbone(x)x = self.avg(x)x = x.view(x.size(0), -1)x = self.Dropout(x)x = self.Bottleneck(x)x = self.last_bn(x)x = F.normalize(x, p=2, dim=1)return xdef forward_feature(self, x):x = self.backbone(x)x = self.avg(x)x = x.view(x.size(0), -1)x = self.Dropout(x)x = self.Bottleneck(x)before_normalize = self.last_bn(x)x = F.normalize(before_normalize, p=2, dim=1)return before_normalize, xdef forward_classifier(self, x):x = self.classifier(x)return x

训练部分

在这里插入图片描述

在这里插入图片描述

这篇关于人脸识别 FaceNet人脸识别(一种人脸识别与聚类的统一嵌入表示)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/648047

相关文章

【生成模型系列(初级)】嵌入(Embedding)方程——自然语言处理的数学灵魂【通俗理解】

【通俗理解】嵌入(Embedding)方程——自然语言处理的数学灵魂 关键词提炼 #嵌入方程 #自然语言处理 #词向量 #机器学习 #神经网络 #向量空间模型 #Siri #Google翻译 #AlexNet 第一节:嵌入方程的类比与核心概念【尽可能通俗】 嵌入方程可以被看作是自然语言处理中的“翻译机”,它将文本中的单词或短语转换成计算机能够理解的数学形式,即向量。 正如翻译机将一种语言

线性代数|机器学习-P36在图中找聚类

文章目录 1. 常见图结构2. 谱聚类 感觉后面几节课的内容跨越太大,需要补充太多的知识点,教授讲得内容跨越较大,一般一节课的内容是书本上的一章节内容,所以看视频比较吃力,需要先预习课本内容后才能够很好的理解教授讲解的知识点。 1. 常见图结构 假设我们有如下图结构: Adjacency Matrix:行和列表示的是节点的位置,A[i,j]表示的第 i 个节点和第 j 个

Spark MLlib模型训练—聚类算法 PIC(Power Iteration Clustering)

Spark MLlib模型训练—聚类算法 PIC(Power Iteration Clustering) Power Iteration Clustering (PIC) 是一种基于图的聚类算法,用于在大规模数据集上进行高效的社区检测。PIC 算法的核心思想是通过迭代图的幂运算来发现数据中的潜在簇。该算法适用于处理大规模图数据,特别是在社交网络分析、推荐系统和生物信息学等领域具有广泛应用。Spa

一种改进的red5集群方案的应用、基于Red5服务器集群负载均衡调度算法研究

转自: 一种改进的red5集群方案的应用: http://wenku.baidu.com/link?url=jYQ1wNwHVBqJ-5XCYq0PRligp6Y5q6BYXyISUsF56My8DP8dc9CZ4pZvpPz1abxJn8fojMrL0IyfmMHStpvkotqC1RWlRMGnzVL1X4IPOa_  基于Red5服务器集群负载均衡调度算法研究 http://ww

用Pytho解决分类问题_DBSCAN聚类算法模板

一:DBSCAN聚类算法的介绍 DBSCAN(Density-Based Spatial Clustering of Applications with Noise)是一种基于密度的聚类算法,DBSCAN算法的核心思想是将具有足够高密度的区域划分为簇,并能够在具有噪声的空间数据库中发现任意形状的簇。 DBSCAN算法的主要特点包括: 1. 基于密度的聚类:DBSCAN算法通过识别被低密

深度学习实战:如何利用CNN实现人脸识别考勤系统

1. 何为CNN及其在人脸识别中的应用 卷积神经网络(CNN)是深度学习中的核心技术之一,擅长处理图像数据。CNN通过卷积层提取图像的局部特征,在人脸识别领域尤其适用。CNN的多个层次可以逐步提取面部的特征,最终实现精确的身份识别。对于考勤系统而言,CNN可以自动从摄像头捕捉的视频流中检测并识别出员工的面部。 我们在该项目中采用了 RetinaFace 模型,它基于CNN的结构实现高效、精准的

华为OD机试真题-学生方阵-2024年OD统一考试(E卷)

题目描述 学校组织活动,将学生排成一个矩形方阵。 请在矩形方阵中找到最大的位置相连的男生数量。这个相连位置在一个直线上,方向可以是水平的,垂直的,成对角线的或者呈反对角线的。 注:学生个数不会超过10000 输入描述 输入的第一行为矩阵的行数和列数, 接下来的 n行为矩阵元素,元素间用""分隔。 输出描述 输出一个整数,表示矩阵中最长的位

UML- 统一建模语言(Unified Modeling Language)创建项目的序列图及类图

陈科肇 ============= 1.主要模型 在UML系统开发中有三个主要的模型: 功能模型:从用户的角度展示系统的功能,包括用例图。 对象模型:采用对象、属性、操作、关联等概念展示系统的结构和基础,包括类图、对象图、包图。 动态模型:展现系统的内部行为。 包括序列图、活动图、状态图。 因为要创建个人空间项目并不是一个很大的项目,我这里只须关注两种图的创建就可以了,而在开始创建UML图

一种快速生成CSV的方法

事情是这个样子的 在QQ群在聊把如何100万数据导出成CSV文件?会不会很慢? 俺回了一句“现在的机器性能好,没啥问题”。 然后大家开始谈论机器的配置了。哎,俺的机器配置有点差。 然后俺就进行了一个测试。 测试数据 数据定义         public struct Rec         {             public int v1;             publi

Spark2.x 入门: KMeans 聚类算法

一 KMeans简介 KMeans 是一个迭代求解的聚类算法,其属于 划分(Partitioning) 型的聚类方法,即首先创建K个划分,然后迭代地将样本从一个划分转移到另一个划分来改善最终聚类的质量。 ML包下的KMeans方法位于org.apache.spark.ml.clustering包下,其过程大致如下: 1.根据给定的k值,选取k个样本点作为初始划分中心;2.计算所有样本点到每