关于毫米波雷达(博世)的使用方法记录

2024-01-25 20:50

本文主要是介绍关于毫米波雷达(博世)的使用方法记录,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

由于研究生毕业课题准备在自动驾驶环境感知这一块做些工作,前期调研发现毫米波雷达被广泛吐槽,即使现在整车厂自动驾驶套件中包含有毫米波雷达,给视觉提供辅助,但是依旧无法克服毫米波雷达本身的缺陷:无法获取三维信息,只有二维,高度信息无法获取;

同时,以 “视觉+毫米波雷达” 进行融合的自动驾驶策略也存在着缺陷, 当视觉识别障碍物未成功时,例如特斯拉6月在台湾发生的撞车事故,视觉因为未提前做过类似的数据集,无法检测到翻倒的车辆(此时来说,相当于一种算法上的失效,另外一部分失效来自于硬件的缺陷,例如,天气原因导致视觉目标检测的失效),但是毫米波雷达检测到了前方静止的障碍物却因为数据处理原因以及考虑到驾驶过程的舒适性,将静止物体在数据预处理过程中 做了剔除,导致本该生效的毫米波雷达因为数据处理原因也变得失效,无法检测到静态障碍物的存在,事故因此发生,两种传感器统统失效,完全违背了多传感器融合进行目标检测的初衷!!!

参考文献:基于视觉和毫米波雷达融合的前方车辆检测算法研究_秦汉
相关 “视觉+毫米波雷达” 做目标检测的文章基本上在处理毫米波雷达时都会对静态的目标点做出剔除操作,否则由于静态障碍物(井盖、交通标志牌(悬空))引起的干扰将会对驾驶过程产生较大的干扰,导致汽车行驶过程中 走走停停,无法连续,所以,像特斯拉在数据处理方面,就主动忽视了一些静态障碍物的存在;(大部分做融合,是将毫米波雷达辅助视觉给视觉检测到的障碍物提供更多的信息、诸如速度、位置、角度等,或者辅助视觉检测一些较远处的动态障碍物等从而达到一个补漏的作用;)

因此,毫米波雷达注定因为硬件本身性能无法承担更高级的自动驾驶任务,所以,此处,毫米波雷达只是用来做个试验,验证一下它的性能是否真的不尽人意???

试验设备:

在这里插入图片描述
仿照以上试验过程即可;
在这里插入图片描述

1.从咸鱼买来的整车(BYD)上拆卸来的毫米波雷达一个,来自博世公司;(前置中距离雷达产品),没有can通讯数据协议,后期无法破解获取到的数据帧(想办法弄);

在这里插入图片描述
在这里插入图片描述

2.淘宝购买的周立功CAN卡(CAN分析仪),买个CANalyst-Ⅱ就可以;

在这里插入图片描述

查看店家提供的CAN卡帮助文件,主要使用到的有两个:
1.波特率侦测工具使用说明书;
由于拿到的设备波特率未知,所以需要做的第一步就是查询到毫米波雷达发送数据的波特率,参考该文档即可;
在这里插入图片描述

2.常见问题及检修使用说明书;
在查询波特率过程中,务必要注意can总线上的终端电阻,
由于毫米波雷达CAN_H与CAN_L内部已经存在一个120欧姆左右的终端电阻,
所以在CAN卡端只需要配置一个120欧姆大小的电阻即可;
(后来实际验证发现,我在CAN卡 端将两个120欧姆都接入,总阻值变为了47欧姆,依然可以采集到来自毫米波雷达的数据帧,正常应该是两个120欧姆并联为60欧姆左右;)

在这里插入图片描述

以上流程做完后,使用软件USB-CAN TOOl启动设备后设置好对应的波特率并打开CAN接收即可,其他接线全部接好,包含毫米波雷达的供电以及 毫米波雷达的CAN_H 与 CAN_L 与CAN卡对应的CAN_H 与 CAN_L 相连接即可(一定要知道毫米波雷达对应的针脚功能!!!)
我对波特率侦测后发现毫米波雷达波特率在500Kbps;

读取到的数据帧(待破解);

说明书中介绍博世的这款毫米波雷达最大检测到的目标个数在32个,通过观察数据帧的ID号可以发现,每27帧就进行了一个循环,意味着之检测到了27个目标;
后续需要对应的协议解析具体的长度为8字节(1个字节8位,等效于2个十六进制的位),从具体的数据也可以看出这点;
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

这篇关于关于毫米波雷达(博世)的使用方法记录的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/644571

相关文章

中文分词jieba库的使用与实景应用(一)

知识星球:https://articles.zsxq.com/id_fxvgc803qmr2.html 目录 一.定义: 精确模式(默认模式): 全模式: 搜索引擎模式: paddle 模式(基于深度学习的分词模式): 二 自定义词典 三.文本解析   调整词出现的频率 四. 关键词提取 A. 基于TF-IDF算法的关键词提取 B. 基于TextRank算法的关键词提取

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

Hadoop数据压缩使用介绍

一、压缩原则 (1)运算密集型的Job,少用压缩 (2)IO密集型的Job,多用压缩 二、压缩算法比较 三、压缩位置选择 四、压缩参数配置 1)为了支持多种压缩/解压缩算法,Hadoop引入了编码/解码器 2)要在Hadoop中启用压缩,可以配置如下参数

Makefile简明使用教程

文章目录 规则makefile文件的基本语法:加在命令前的特殊符号:.PHONY伪目标: Makefilev1 直观写法v2 加上中间过程v3 伪目标v4 变量 make 选项-f-n-C Make 是一种流行的构建工具,常用于将源代码转换成可执行文件或者其他形式的输出文件(如库文件、文档等)。Make 可以自动化地执行编译、链接等一系列操作。 规则 makefile文件

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象

pdfmake生成pdf的使用

实际项目中有时会有根据填写的表单数据或者其他格式的数据,将数据自动填充到pdf文件中根据固定模板生成pdf文件的需求 文章目录 利用pdfmake生成pdf文件1.下载安装pdfmake第三方包2.封装生成pdf文件的共用配置3.生成pdf文件的文件模板内容4.调用方法生成pdf 利用pdfmake生成pdf文件 1.下载安装pdfmake第三方包 npm i pdfma

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

浅谈主机加固,六种有效的主机加固方法

在数字化时代,数据的价值不言而喻,但随之而来的安全威胁也日益严峻。从勒索病毒到内部泄露,企业的数据安全面临着前所未有的挑战。为了应对这些挑战,一种全新的主机加固解决方案应运而生。 MCK主机加固解决方案,采用先进的安全容器中间件技术,构建起一套内核级的纵深立体防护体系。这一体系突破了传统安全防护的局限,即使在管理员权限被恶意利用的情况下,也能确保服务器的安全稳定运行。 普适主机加固措施:

webm怎么转换成mp4?这几种方法超多人在用!

webm怎么转换成mp4?WebM作为一种新兴的视频编码格式,近年来逐渐进入大众视野,其背后承载着诸多优势,但同时也伴随着不容忽视的局限性,首要挑战在于其兼容性边界,尽管WebM已广泛适应于众多网站与软件平台,但在特定应用环境或老旧设备上,其兼容难题依旧凸显,为用户体验带来不便,再者,WebM格式的非普适性也体现在编辑流程上,由于它并非行业内的通用标准,编辑过程中可能会遭遇格式不兼容的障碍,导致操