Ubuntu20.04+Quadro RTX 5000,3D gaussian环境配置

2024-01-25 20:20

本文主要是介绍Ubuntu20.04+Quadro RTX 5000,3D gaussian环境配置,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 0. 引言
  • 1. cuda安装步骤
    • 1.1显卡驱动安装
      • 禁用系统自带驱动
      • nvidia显卡驱动安装
    • 1.2 CUDA安装
    • 1.3 配置环境变量
  • 2. 3D gaussian安装
  • 3. Viewer安装

0. 引言

2020年,NeRF的出现之际引起了轩然大波,出现了大量相关工作。3D gaussian算是新视角生成领域目前的SOTA,可以进行实时的渲染;最大训练速度上可以与Instant相当,且质量差不多;增加迭代次数后,可以显著提高重建质量,在训练时间51min的情况下,重建效果可以稍微超过Mip-NeRF(48h)。这种好东西谁不想学习下呢,所以我们先进行第一步:配置3D gaussian环境。

我当前的环境为ubuntu 20.04+Quadro RTX 5000。这个项目对显存要求比较高,官方说明需要24G的显存,如果显存不够,可以看github项目主页最下面的FAQ,有对低显存方案进行说明。除此以外Viewer的版本目前好像只支持windows、ubuntu20.04和22.04。

github主页中有一个在windows中安装的youtue教程,非常详细。

目前处于学习阶段,简单用已有数据集进行测试,验证环境可用后准备开始阅读源码。因此还没有安装colmap来处理自己的数据,之后会对colmap的配置进行补充。后边也会新开两篇来讲解论文和代码。

1. cuda安装步骤

1.1显卡驱动安装

禁用系统自带驱动

如果不禁用这个开源驱动,后边安装可能会出现冲突,通过lsmod | grep nouveau来查看该驱动的情况,如果有输出说明该驱动正在工作,否则表示已经禁用。

禁用方法如下:
sudo gedit /etc/modprobe.d/blacklist.conf
在该文件末尾加上

blacklist nouveau
options nouveau modeset=0

在终端输入sudo update -initramfs -u

nvidia显卡驱动安装

显卡是硬件,想要显卡可以正常工作必须找到对应的驱动,否则会出现各种各样显示上的问题,比如显示器不亮,分辨率不正常
ubuntu-drivers devices可以查询推荐安装的驱动版本
以我的输出为例

driver   : nvidia-driver-495 - third-party non-free
driver   : nvidia-driver-535 - third-party non-free recommended
driver   : nvidia-driver-510 - third-party non-free
driver   : nvidia-driver-465 - third-party non-free

可以看到535为当前显卡的适配驱动版本
然后打开Software&Updates进行对应版本的安装
在这里插入图片描述

重启电脑后,如果显示都正常,那就应该大功告成了。但我曾遇到过一个问题,就是已经用了推荐版本的显卡驱动,但无法点亮副屏,然后降了版本才解决的。总而言之显示出了问题,很大可能是显卡驱动的问题,多换几个版本试试。

在终端输入nvidia-smi,如果没报错就ok了,在输出的信息中可以看到当前驱动的版本和支持的最高版本CUDA,后边安装CUDA的时候要注意版本不能超过这个。

1.2 CUDA安装

https://developer.nvidia.com/cuda-toolkit-archive
从这个链接中选择合适的CUDA版本,以我的为例
在这里插入图片描述

选择之后可以看到下边的安装指令,逐条执行即可。但我安装的时候出现了一个问题,有可能系统会自动帮你升级到最新的驱动,有的库需要特殊的CUDA版本,所以我们可以更改最后一行命令,来安装指定版本的CUDA,sudo apt-get -y install cuda-xxx

1.3 配置环境变量

终端输入nvcc -V来检查CUDA是否安装成功,如果出现了命令找不到的问题,先别急,我们还需要配置一下CUDA的环境变量
终端执行sudo gedit ~/.bashrc,在文件的最后加上(路径按自己的来)

export CUDA_HOME=/usr/local/cuda-11.8
if [[ ":$PATH:" != *":/usr/local/cuda-11.8/bin:"* ]]; thenexport PATH=$PATH:/usr/local/cuda-11.8/bin
fi
if [[ ":$LD_LIBRARY_PATH:" != *":/usr/local/cuda-11.8/lib64:"* ]]; thenexport LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/cuda-11.8/lib64
fi

再输入source ~/.bashrc来使得更改生效,这次在执行nvcc -V,有如下输出,代表安装成功。

nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2022 NVIDIA Corporation
Built on Wed_Sep_21_10:33:58_PDT_2022
Cuda compilation tools, release 11.8, V11.8.89
Build cuda_11.8.r11.8/compiler.31833905_0

2. 3D gaussian安装

这个项目的安装没啥难度,问题基本都处在CUDA上边
这部分是对官网加成的梳理https://github.com/graphdeco-inria/gaussian-splatting

  • git clone git@github.com:graphdeco-inria/gaussian-splatting.git --recursive
    最后的–recursive比较重要,不加的话有的东西装不上。
  • 进入clone下来的项目目录,在已经安装anaconda的情况下,执行如下命令
conda env create --file environment.yml
conda activate gaussian_splatting

安装两个子模块的时候,可能会报一些错误,这些错误藏在很长的文本中,并且有时候没有颜色标示,所以需要仔细地找出错误点,比如本地缺少一些库,CUDA环境变量没设置对一类的。

需要非常注意!!!!3dgs对CUDA版本有特殊的要求,安装到本地的完整版CUDA版本是11.8,而安装到conda环境中供pytorch使用的阉割版本是11.6(这个版本不包含nvcc,一些复杂功能也没有),官方的解释如下:

Hi,
there’s two different things. One is the full CUDA SDK, including the compiler (NVCC). We need it to build the PyTorch extensions that we wrote ourselves and that the optimizer uses. The other is the CUDA runtime that PyTorch is built against (the latest CUDA runtime that PyTorch 1.12 works with is 11.6). If you install PyTorch with CUDA with Conda, it installs a small subset of the full CUDA SDK that cannot do compilation. If you install the full 11.6 SDK and try to compile our extensions with it, it can fail because of a known issue with C++14 support in the 11.6 CUDA compilers.

训练代码python train.py -s <path to COLMAP or NeRF Synthetic dataset>

3. Viewer安装

按官方的说法,目前在windows\ ubuntu20.04和22.04上是可用的,其他版本不清楚。

sudo apt install -y libglew-dev libassimp-dev libboost-all-dev libgtk-3-dev libopencv-dev libglfw3-dev libavdevice-dev libavcodec-dev libeigen3-dev libxxf86vm-dev libembree-dev
# Project setup
cd SIBR_viewers
git checkout fossa_compatibility #如果是22.04就不需要加这行命令
cmake -Bbuild . -DCMAKE_BUILD_TYPE=Release # add -G Ninja to build faster
cmake --build build -j24 --target install

用从官网下载的训练好的模型进行测试
./<SIBR install dir>/bin/SIBR_gaussianViewer_app -m <path to trained model>
在这里插入图片描述

这篇关于Ubuntu20.04+Quadro RTX 5000,3D gaussian环境配置的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/644492

相关文章

Zookeeper安装和配置说明

一、Zookeeper的搭建方式 Zookeeper安装方式有三种,单机模式和集群模式以及伪集群模式。 ■ 单机模式:Zookeeper只运行在一台服务器上,适合测试环境; ■ 伪集群模式:就是在一台物理机上运行多个Zookeeper 实例; ■ 集群模式:Zookeeper运行于一个集群上,适合生产环境,这个计算机集群被称为一个“集合体”(ensemble) Zookeeper通过复制来实现

CentOS7安装配置mysql5.7 tar免安装版

一、CentOS7.4系统自带mariadb # 查看系统自带的Mariadb[root@localhost~]# rpm -qa|grep mariadbmariadb-libs-5.5.44-2.el7.centos.x86_64# 卸载系统自带的Mariadb[root@localhost ~]# rpm -e --nodeps mariadb-libs-5.5.44-2.el7

无人叉车3d激光slam多房间建图定位异常处理方案-墙体画线地图切分方案

墙体画线地图切分方案 针对问题:墙体两侧特征混淆误匹配,导致建图和定位偏差,表现为过门跳变、外月台走歪等 ·解决思路:预期的根治方案IGICP需要较长时间完成上线,先使用切分地图的工程化方案,即墙体两侧切分为不同地图,在某一侧只使用该侧地图进行定位 方案思路 切分原理:切分地图基于关键帧位置,而非点云。 理论基础:光照是直线的,一帧点云必定只能照射到墙的一侧,无法同时照到两侧实践考虑:关

hadoop开启回收站配置

开启回收站功能,可以将删除的文件在不超时的情况下,恢复原数据,起到防止误删除、备份等作用。 开启回收站功能参数说明 (1)默认值fs.trash.interval = 0,0表示禁用回收站;其他值表示设置文件的存活时间。 (2)默认值fs.trash.checkpoint.interval = 0,检查回收站的间隔时间。如果该值为0,则该值设置和fs.trash.interval的参数值相等。

NameNode内存生产配置

Hadoop2.x 系列,配置 NameNode 内存 NameNode 内存默认 2000m ,如果服务器内存 4G , NameNode 内存可以配置 3g 。在 hadoop-env.sh 文件中配置如下。 HADOOP_NAMENODE_OPTS=-Xmx3072m Hadoop3.x 系列,配置 Nam

wolfSSL参数设置或配置项解释

1. wolfCrypt Only 解释:wolfCrypt是一个开源的、轻量级的、可移植的加密库,支持多种加密算法和协议。选择“wolfCrypt Only”意味着系统或应用将仅使用wolfCrypt库进行加密操作,而不依赖其他加密库。 2. DTLS Support 解释:DTLS(Datagram Transport Layer Security)是一种基于UDP的安全协议,提供类似于

阿里开源语音识别SenseVoiceWindows环境部署

SenseVoice介绍 SenseVoice 专注于高精度多语言语音识别、情感辨识和音频事件检测多语言识别: 采用超过 40 万小时数据训练,支持超过 50 种语言,识别效果上优于 Whisper 模型。富文本识别:具备优秀的情感识别,能够在测试数据上达到和超过目前最佳情感识别模型的效果。支持声音事件检测能力,支持音乐、掌声、笑声、哭声、咳嗽、喷嚏等多种常见人机交互事件进行检测。高效推

【Python编程】Linux创建虚拟环境并配置与notebook相连接

1.创建 使用 venv 创建虚拟环境。例如,在当前目录下创建一个名为 myenv 的虚拟环境: python3 -m venv myenv 2.激活 激活虚拟环境使其成为当前终端会话的活动环境。运行: source myenv/bin/activate 3.与notebook连接 在虚拟环境中,使用 pip 安装 Jupyter 和 ipykernel: pip instal

安装nodejs环境

本文介绍了如何通过nvm(NodeVersionManager)安装和管理Node.js及npm的不同版本,包括下载安装脚本、检查版本并安装特定版本的方法。 1、安装nvm curl -o- https://raw.githubusercontent.com/nvm-sh/nvm/v0.39.0/install.sh | bash 2、查看nvm版本 nvm --version 3、安装

【IPV6从入门到起飞】5-1 IPV6+Home Assistant(搭建基本环境)

【IPV6从入门到起飞】5-1 IPV6+Home Assistant #搭建基本环境 1 背景2 docker下载 hass3 创建容器4 浏览器访问 hass5 手机APP远程访问hass6 更多玩法 1 背景 既然电脑可以IPV6入站,手机流量可以访问IPV6网络的服务,为什么不在电脑搭建Home Assistant(hass),来控制你的设备呢?@智能家居 @万物互联