如何为百亿数据请求做资源预估

2024-01-25 09:58

本文主要是介绍如何为百亿数据请求做资源预估,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

如何为百亿数据请求做资源预估

  • 如何为百亿数据请求做资源预估
    • 基本准则->先考虑要做什么
    • 计算磁盘资源方法
    • 200亿/s的请求,QPS怎么算, 总集群流量是多少, 选择千兆网还是万兆网?
    • 每台kafka机器内存大小配置
    • CPU核心数选型

如何为百亿数据请求做资源预估

收到需求:每天200亿请求,每个请求3k大小,需要4个副本,数据保留5天,数据有3个不同的主题。数据存储在kafka上,需要多少台机器,机器配置是怎样?

基本准则->先考虑要做什么

1.计算磁盘资源:计算一天的存储数据的增量

2.计算并发资源:QPS

3.计算内存资源:计算kafka内存消耗

计算磁盘资源方法

一天一个副本增量: 200亿*3k = 60T

考虑副本数量:60T*4 = 240T

考虑保留天数:240T*5=1200T

按照满负荷算:每台服务器一般12或16个盘,这里取12台: 需要服务器数量 = 1200T/(2T*12个)=50台

需要机器数量:资源磁盘利用率按照50%算: 应对未来的数据增量。 于是,磁盘使用率降低一半,机器数量需要增加一倍 50台 * 2 = 100台。 ( 1200T/(2T12个50%)=100台)

200亿/s的请求,QPS怎么算, 总集群流量是多少, 选择千兆网还是万兆网?

QPS主要计算高峰时间段的QPS数。

二八法则: 80%的请求在20%的时间产生。

00:00-08:00是请求低峰段

08:00-24:00 这16小时是请求高峰段 : 接收的请求 200亿*80% = 160亿请求

高峰期请求量: 这16小时也有高峰段: 16小时20% = 3.2小时 约等3小时 接收 160亿 * 80% = 128亿 的请求

每秒总QPS: 128亿/(3 * 60 * 60)秒 = 118w/s

每台机器QPS:118w/s / 100 = 1.18万/台 ,

总数据流量大小:每条数据大小3k, 单机流量 1.18w * 3k = 34M/s, 计算有4个副本 34M/s4 = 136M/s, 10个消费者,消费者的流量是34M/s10=340M/s。 总流量=生产流量+消费流量=340M/s + 136M/s = 476M/s

集群环境网卡:选择万兆网卡

每台kafka机器内存大小配置

按照上面配置,100台机器,每台磁盘2T*12个。

已知主题是3个,所以总共3个topic。 为了提高每台机器的cpu利用率,生产消费的并行度,每个topic在每台机器分配5个partition, 单个topic有500个partition(100台机器),4个副本,算上副本500*4=2000个partition,3个topic,就是2000 * 3 = 6000个partition

每台机器partiton数量:60个partition(6000个partition/100台机器)

每个分片日志大小是1G/个文件, 按照kafka把数据在内存读写的特点,把1G文件全部进行缓存,需要6000G内存,6000G/100台=60G/台机器。考虑数据读写很快,不需要把1G的内容全部进行缓存,可以50%或者25%放内存。按照50%进行计算, 每台机器内存需要30G。加上kafka的jvm大小(一般配置6G)和操作系统的内存。配置64G的内存

CPU核心数选型

kafka的工作线程特点,主要工作线程ServerSocket类,内部封装了acceptor,processor, handler线程。

其他是一些后台线程和定时器线程等。

acceptorprocessorhandler
默认线程数138
建议线程数3932

总线程数量大概100-200个。

安装生产经验

4core的机器,跑几十的线程,CPU跑满

8core的机器,跑几十个线程,OK

16core机器,跑100-200个线程

建议16core以上的机器,例如20,24核心。

这篇关于如何为百亿数据请求做资源预估的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/642914

相关文章

Python数据验证神器Pydantic库的使用和实践中的避坑指南

《Python数据验证神器Pydantic库的使用和实践中的避坑指南》Pydantic是一个用于数据验证和设置的库,可以显著简化API接口开发,文章通过一个实际案例,展示了Pydantic如何在生产环... 目录1️⃣ 崩溃时刻:当你的API接口又双叒崩了!2️⃣ 神兵天降:3行代码解决验证难题3️⃣ 深度

MySQL快速复制一张表的四种核心方法(包括表结构和数据)

《MySQL快速复制一张表的四种核心方法(包括表结构和数据)》本文详细介绍了四种复制MySQL表(结构+数据)的方法,并对每种方法进行了对比分析,适用于不同场景和数据量的复制需求,特别是针对超大表(1... 目录一、mysql 复制表(结构+数据)的 4 种核心方法(面试结构化回答)方法 1:CREATE

详解C++ 存储二进制数据容器的几种方法

《详解C++存储二进制数据容器的几种方法》本文主要介绍了详解C++存储二进制数据容器,包括std::vector、std::array、std::string、std::bitset和std::ve... 目录1.std::vector<uint8_t>(最常用)特点:适用场景:示例:2.std::arra

MySQL中的DELETE删除数据及注意事项

《MySQL中的DELETE删除数据及注意事项》MySQL的DELETE语句是数据库操作中不可或缺的一部分,通过合理使用索引、批量删除、避免全表删除、使用TRUNCATE、使用ORDERBY和LIMI... 目录1. 基本语法单表删除2. 高级用法使用子查询删除删除多表3. 性能优化策略使用索引批量删除避免

MySQL 数据库进阶之SQL 数据操作与子查询操作大全

《MySQL数据库进阶之SQL数据操作与子查询操作大全》本文详细介绍了SQL中的子查询、数据添加(INSERT)、数据修改(UPDATE)和数据删除(DELETE、TRUNCATE、DROP)操作... 目录一、子查询:嵌套在查询中的查询1.1 子查询的基本语法1.2 子查询的实战示例二、数据添加:INSE

Linux服务器数据盘移除并重新挂载的全过程

《Linux服务器数据盘移除并重新挂载的全过程》:本文主要介绍在Linux服务器上移除并重新挂载数据盘的整个过程,分为三大步:卸载文件系统、分离磁盘和重新挂载,每一步都有详细的步骤和注意事项,确保... 目录引言第一步:卸载文件系统第二步:分离磁盘第三步:重新挂载引言在 linux 服务器上移除并重新挂p

使用MyBatis TypeHandler实现数据加密与解密的具体方案

《使用MyBatisTypeHandler实现数据加密与解密的具体方案》在我们日常的开发工作中,经常会遇到一些敏感数据需要存储,比如用户的手机号、身份证号、银行卡号等,为了保障数据安全,我们通常会对... 目录1. 核心概念:什么是 TypeHandler?2. 实战场景3. 代码实现步骤步骤 1:定义 E

使用C#导出Excel数据并保存多种格式的完整示例

《使用C#导出Excel数据并保存多种格式的完整示例》在现代企业信息化管理中,Excel已经成为最常用的数据存储和分析工具,从员工信息表、销售数据报表到财务分析表,几乎所有部门都离不开Excel,本文... 目录引言1. 安装 Spire.XLS2. 创建工作簿和填充数据3. 保存为不同格式4. 效果展示5

Python多任务爬虫实现爬取图片和GDP数据

《Python多任务爬虫实现爬取图片和GDP数据》本文主要介绍了基于FastAPI开发Web站点的方法,包括搭建Web服务器、处理图片资源、实现多任务爬虫和数据可视化,同时,还简要介绍了Python爬... 目录一. 基于FastAPI之Web站点开发1. 基于FastAPI搭建Web服务器2. Web服务

MySQL 批量插入的原理和实战方法(快速提升大数据导入效率)

《MySQL批量插入的原理和实战方法(快速提升大数据导入效率)》在日常开发中,我们经常需要将大量数据批量插入到MySQL数据库中,本文将介绍批量插入的原理、实现方法,并结合Python和PyMySQ... 目录一、批量插入的优势二、mysql 表的创建示例三、python 实现批量插入1. 安装 PyMyS