七夕节,我用Python写了一个婚介模型

2024-01-25 06:40

本文主要是介绍七夕节,我用Python写了一个婚介模型,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

先声明一下:本文纯属七夕应景娱乐之作。如果有人因为遵循本模型提出的择偶理论而导致失恋或单身,除了同情,我不能补偿更多。

在中国的传统节日里,七夕可能是起源最神秘、内涵最深刻的一个了。当然,这不是本文的重点,我们的核心问题是:在七夕这个特有纪念意义的日子,你真的想好了要向TA表白吗?TA真的是你唯一正确的选择吗?这个婚介模型,也许对你有一些启发。

我的婚介所生意兴隆,无数想找到理想伴侣的单身人士都来光顾。根据颜值、人品、能力、财富等因素,我给每位客户确定了一个素质指数(Quality Index),简写为qidx。统计发现,qidx呈现均值8.0、标准差0.5正态分布。

下面是1万客户的qidx统计分布图,可以看出绝大多数单身人士的qidx位于7.0~9.0之间,评价较为负面的和非常优秀的,都属于少数派。

import numpy as np
import matplotlib.pyplot as pltsingles = np.random.normal(loc=8.0, scale=0.5, size=10000)
plt.hist(singles, bins=8, histtype='step')
plt.show()

在这里插入图片描述
一般情况下,我的客户缴费1次,将获得10次选择机会。我向客户推荐目标的策略基于“门当户对”,总是选择和客户的qidx相适应的异性,具体说就是以客户的qidx为均值,以0.1的方差,按照正态分布随机生成。

通常,客户有两种方式从我为他们推荐的目标中做出选择。第一种是基于传统的择偶观念,具体规则如下.

  1. 有10%的客户会对当前的推荐目标一见钟情,不在意双方的qidx是否匹配
  2. 如果当前推荐目标的qidx比客户高,但不超过0.2,客户选择当前推荐目标的概率,会随剩余选择机会的减少而增加,大约从0.35升至是0.8
  3. 如果当前推荐目标的qidx比客户高0.2以上,客户选择当前推荐目标的概率,会随剩余选择机会的减少而增加,大约从0.55升至是1.0
  4. 如果当前推荐目标的qidx比客户低,但不超过0.2,客户选择当前推荐目标的概率,会随剩余选择机会的减少而增加,大约从0.25升至0.7
  5. 如果当前推荐目标的qidx比客户低0.2以上,客户选择当前目标的概率,会随剩余选择机会的减少而增加,大约从0升至0.18

第二种匹配方式则是基于“麦穗理论”,听起来很高大上。这里省略了关于麦穗理论的讲解,感兴趣的同学可以自行检索。具体说,就是客户在前4次的推荐中,不做出选择,只记下其中的最高的qidx;从第5次开始,只要遇到大于或等于前4次最高qidx的推荐目标,就做出选择。

下面,我分别用两种匹配方式为1万名顾客选择配偶,结果会怎样呢?

# -*- encoding: utf-8 -*-import numpy as npclass Single:def __init__(self, qidx, times):self.times = times # 婚介所提供的匹配次数self.counter = 0 # 当前匹配次数self.qidx = qidx # 客户的qidxself.spouse = None # 匹配成功的配偶的qidxself.histroy = list() # 基于麦穗理论的前times/e次的推荐对象的qidxdef math_classical(self, spouse):self.counter += 1if np.random.random() < 0.1:self.spouse = spouseif spouse - self.qidx >= 0.2:if np.random.random() < 1-0.05*(10-self.counter):self.spouse = spouseelif spouse - self.qidx > 0:if np.random.random() < 0.8-0.05*(10-self.counter):self.spouse = spouseelif self.qidx - spouse >= 0.2:if np.random.random() < 0.18-0.02*(10-self.counter):self.spouse = spouseelif self.qidx - spouse >= 0:if np.random.random() < 0.7-0.05*(10-self.counter):self.spouse = spousedef match_technical(self, spouse):self.counter += 1if self.counter < self.times/np.e:self.histroy.append(spouse)elif spouse >= max(self.histroy):self.spouse = spousedef main(math_mode, total=10000, times=10):# 生成总数为total的客户,其qidx有正态随机函数生成singles = [Single(np.random.normal(loc=8.0, scale=0.5), times) for i in range(total)]for p in singles:for i in range(10):if p.counter < 10 and not p.spouse:spouse = np.random.normal(loc=p.qidx, scale=0.1)getattr(p, math_mode)(spouse)matched = np.array([(p.qidx, p.spouse) for p in singles if p.spouse])diff = matched[:,0] - matched[:,1]print('----------------------------------')print('成功匹配%d人,成功率%0.2f%%'%(matched.shape[0], matched.shape[0]*100/total))print('客户qidx均值%0.2f,配偶均值%0.2f'%(np.sum(matched[:,0])/matched.shape[0], np.sum(matched[:,1])/matched.shape[0]))print('匹配方差%0.2f,匹配标准差%0.2f'%(diff.var(), diff.std()))print()if __name__ == '__main__':print('基于传统方式择偶的统计结果')main('math_classical')print('基于麦穗理论择偶的统计结果')main('match_technical')    

比较两种方案的匹配成功率、匹配成功的客户的平均qidx、匹配成功的客户配偶的平均qidx、客户和配偶的qidx的方差等,你会发现,这个结果真的有点意思。

基于传统方式择偶的统计结果
----------------------------------
成功匹配10000人,成功率100.00%
客户qidx均值8.00,配偶均值8.02
匹配方差0.01,匹配标准差0.10基于麦穗理论择偶的统计结果
----------------------------------
成功匹配7138人,成功率71.38%
客户qidx均值8.00,配偶均值8.11
匹配方差0.00,匹配标准差0.07

结论:

  1. 基于传统方式的择偶,成功率更高(100% VS 71.38%);
  2. 基于麦穗理论择偶,配偶素质指数更高(8.11 VS 8.02);
  3. 基于麦穗理论择偶,双方qidx差的标准差更小(0.07 VS 0.10),这意味着双方匹配更好。

这篇关于七夕节,我用Python写了一个婚介模型的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/642401

相关文章

如何使用 Python 读取 Excel 数据

《如何使用Python读取Excel数据》:本文主要介绍使用Python读取Excel数据的详细教程,通过pandas和openpyxl,你可以轻松读取Excel文件,并进行各种数据处理操... 目录使用 python 读取 Excel 数据的详细教程1. 安装必要的依赖2. 读取 Excel 文件3. 读

Python的time模块一些常用功能(各种与时间相关的函数)

《Python的time模块一些常用功能(各种与时间相关的函数)》Python的time模块提供了各种与时间相关的函数,包括获取当前时间、处理时间间隔、执行时间测量等,:本文主要介绍Python的... 目录1. 获取当前时间2. 时间格式化3. 延时执行4. 时间戳运算5. 计算代码执行时间6. 转换为指

利用Python调试串口的示例代码

《利用Python调试串口的示例代码》在嵌入式开发、物联网设备调试过程中,串口通信是最基础的调试手段本文将带你用Python+ttkbootstrap打造一款高颜值、多功能的串口调试助手,需要的可以了... 目录概述:为什么需要专业的串口调试工具项目架构设计1.1 技术栈选型1.2 关键类说明1.3 线程模

Python ZIP文件操作技巧详解

《PythonZIP文件操作技巧详解》在数据处理和系统开发中,ZIP文件操作是开发者必须掌握的核心技能,Python标准库提供的zipfile模块以简洁的API和跨平台特性,成为处理ZIP文件的首选... 目录一、ZIP文件操作基础三板斧1.1 创建压缩包1.2 解压操作1.3 文件遍历与信息获取二、进阶技

Python Transformers库(NLP处理库)案例代码讲解

《PythonTransformers库(NLP处理库)案例代码讲解》本文介绍transformers库的全面讲解,包含基础知识、高级用法、案例代码及学习路径,内容经过组织,适合不同阶段的学习者,对... 目录一、基础知识1. Transformers 库简介2. 安装与环境配置3. 快速上手示例二、核心模

Python正则表达式语法及re模块中的常用函数详解

《Python正则表达式语法及re模块中的常用函数详解》这篇文章主要给大家介绍了关于Python正则表达式语法及re模块中常用函数的相关资料,正则表达式是一种强大的字符串处理工具,可以用于匹配、切分、... 目录概念、作用和步骤语法re模块中的常用函数总结 概念、作用和步骤概念: 本身也是一个字符串,其中

Python使用getopt处理命令行参数示例解析(最佳实践)

《Python使用getopt处理命令行参数示例解析(最佳实践)》getopt模块是Python标准库中一个简单但强大的命令行参数处理工具,它特别适合那些需要快速实现基本命令行参数解析的场景,或者需要... 目录为什么需要处理命令行参数?getopt模块基础实际应用示例与其他参数处理方式的比较常见问http

python实现svg图片转换为png和gif

《python实现svg图片转换为png和gif》这篇文章主要为大家详细介绍了python如何实现将svg图片格式转换为png和gif,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录python实现svg图片转换为png和gifpython实现图片格式之间的相互转换延展:基于Py

Python中的getopt模块用法小结

《Python中的getopt模块用法小结》getopt.getopt()函数是Python中用于解析命令行参数的标准库函数,该函数可以从命令行中提取选项和参数,并对它们进行处理,本文详细介绍了Pyt... 目录getopt模块介绍getopt.getopt函数的介绍getopt模块的常用用法getopt模

Python利用ElementTree实现快速解析XML文件

《Python利用ElementTree实现快速解析XML文件》ElementTree是Python标准库的一部分,而且是Python标准库中用于解析和操作XML数据的模块,下面小编就来和大家详细讲讲... 目录一、XML文件解析到底有多重要二、ElementTree快速入门1. 加载XML的两种方式2.