论文阅读:Vary-toy论文阅读笔记

2024-01-25 00:04
文章标签 笔记 阅读 论文 toy vary

本文主要是介绍论文阅读:Vary-toy论文阅读笔记,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

    • 引言
    • 整体结构图
    • 方法介绍
      • 训练vision vocabulary阶段
        • PDF数据
        • 目标检测数据
      • 训练Vary-toy阶段
        • Vary-toy结构
        • 数据集情况

引言

论文:Small Language Model Meets with Reinforced Vision Vocabulary

Paper | Github | Demo


说来也巧,之前在写论文阅读:Vary论文阅读笔记文章时,正好看到了Vary-toy刚刚发布。

这次,咱也是站在了时代的前沿,这不赶紧先睹为快。让我看看相比于Vary,Vary-toy做了哪些改进?

整体结构图


从整体结构来看,仍然沿用了Vary系列结构。先利用Vary-tiny + pipeline训练一个Vision vocabulary,之后在pre-train和SFT阶段将new vocabulary与CLIP的Vocabulary相结合,来训练Qwen-1.8B模型。

不同于Vary,用了Qwen-7B,这次用了Qwen-1.8B,模型更小,对于部署使用更加友好。

这次除了原有的PDF数据外,又增加了目标检测的数据集,让Vary-toy更加具有通用性。

方法介绍

作者在设计Vary-toy时,主要侧重解决以下两个问题:

  1. 如何基于Vary-tiny + pipeline产生一个更加practical vision vocabulary ?
  2. 如何在不损坏Qwen-1.8B模型特征前提下,利用new vision vocabulary来使Vary-toy-1.8B产生新的特征?

训练vision vocabulary阶段

出发点是:

  1. vision vocabulary network是由SAM-base作为初始化模型训练而来的。这样做,可以获得SAM对文本的感知能力。但是也存在遗忘SAM中对自然物体目标的感知能力。
  2. 作者认为,只将密集文本的视觉知识写入80M的网络是浪费。
PDF数据

该部分与Vary中工作一致,看着量级更大了。最终准备了2M英文文档数据和2M的中文文档数据。PDF来源主要是arXiv、CC-MAIN-2021-31-PDF-UNTRUNCATED和e-books。示例数据如上图。

私以为该部分仍然有很大进步空间。如在提取PDF内容时,可以考虑到版面的因素,使得内容更加有语义。当然,这只是猜测,也许作者就是这么做的呢!

目标检测数据

为了充分利用来自SAM模型对自然图像的感知能力,作者引入了目标检测数据到训练vision vocabulary过程中。所用数据主要来自Object365和OpenImage。

因为部分图像中存在太多的物体,这会超出OPT-125M的token数量限制。因此作者做了两步处理:

  1. 如果图像中物体框数目<30个,则允许Vary-tiny + pipeline过程中的prompt为Detect all objects in this image
  2. 如果图像中物体框数目>30个,则更换prompt模板为:Detect class1, class2, … in this image.

最终,整理出来的目标价检测数据大约有3M条。

训练Vary-toy阶段

Vary-toy结构

Vary-toy主体结构与Vary相同,但是有些微小区别:

  1. 当输入图像( H × W H\times W H×W)进入new vision vocabulary分支时,图像会被直resize到1024 x 1024,而送入CLIP分支时,则中心裁剪为224x224
  2. 直接将vision vocabulary分支和CLIP分支输出拼起来,正好是Qwen-1.8B的输入channel
  3. 相比于Vary,为了让变化小一些,作者仍然在vision vocabulary网络后添加了embedding layer
数据集情况

TODO

这篇关于论文阅读:Vary-toy论文阅读笔记的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/641469

相关文章

JAVA智听未来一站式有声阅读平台听书系统小程序源码

智听未来,一站式有声阅读平台听书系统 🌟&nbsp;开篇:遇见未来,从“智听”开始 在这个快节奏的时代,你是否渴望在忙碌的间隙,找到一片属于自己的宁静角落?是否梦想着能随时随地,沉浸在知识的海洋,或是故事的奇幻世界里?今天,就让我带你一起探索“智听未来”——这一站式有声阅读平台听书系统,它正悄悄改变着我们的阅读方式,让未来触手可及! 📚&nbsp;第一站:海量资源,应有尽有 走进“智听

AI hospital 论文Idea

一、Benchmarking Large Language Models on Communicative Medical Coaching: A Dataset and a Novel System论文地址含代码 大多数现有模型和工具主要迎合以患者为中心的服务。这项工作深入探讨了LLMs在提高医疗专业人员的沟通能力。目标是构建一个模拟实践环境,人类医生(即医学学习者)可以在其中与患者代理进行医学

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

系统架构师考试学习笔记第三篇——架构设计高级知识(20)通信系统架构设计理论与实践

本章知识考点:         第20课时主要学习通信系统架构设计的理论和工作中的实践。根据新版考试大纲,本课时知识点会涉及案例分析题(25分),而在历年考试中,案例题对该部分内容的考查并不多,虽在综合知识选择题目中经常考查,但分值也不高。本课时内容侧重于对知识点的记忆和理解,按照以往的出题规律,通信系统架构设计基础知识点多来源于教材内的基础网络设备、网络架构和教材外最新时事热点技术。本课时知识

论文翻译:arxiv-2024 Benchmark Data Contamination of Large Language Models: A Survey

Benchmark Data Contamination of Large Language Models: A Survey https://arxiv.org/abs/2406.04244 大规模语言模型的基准数据污染:一项综述 文章目录 大规模语言模型的基准数据污染:一项综述摘要1 引言 摘要 大规模语言模型(LLMs),如GPT-4、Claude-3和Gemini的快

论文阅读笔记: Segment Anything

文章目录 Segment Anything摘要引言任务模型数据引擎数据集负责任的人工智能 Segment Anything Model图像编码器提示编码器mask解码器解决歧义损失和训练 Segment Anything 论文地址: https://arxiv.org/abs/2304.02643 代码地址:https://github.com/facebookresear

数学建模笔记—— 非线性规划

数学建模笔记—— 非线性规划 非线性规划1. 模型原理1.1 非线性规划的标准型1.2 非线性规划求解的Matlab函数 2. 典型例题3. matlab代码求解3.1 例1 一个简单示例3.2 例2 选址问题1. 第一问 线性规划2. 第二问 非线性规划 非线性规划 非线性规划是一种求解目标函数或约束条件中有一个或几个非线性函数的最优化问题的方法。运筹学的一个重要分支。2

【C++学习笔记 20】C++中的智能指针

智能指针的功能 在上一篇笔记提到了在栈和堆上创建变量的区别,使用new关键字创建变量时,需要搭配delete关键字销毁变量。而智能指针的作用就是调用new分配内存时,不必自己去调用delete,甚至不用调用new。 智能指针实际上就是对原始指针的包装。 unique_ptr 最简单的智能指针,是一种作用域指针,意思是当指针超出该作用域时,会自动调用delete。它名为unique的原因是这个

查看提交历史 —— Git 学习笔记 11

查看提交历史 查看提交历史 不带任何选项的git log-p选项--stat 选项--pretty=oneline选项--pretty=format选项git log常用选项列表参考资料 在提交了若干更新,又或者克隆了某个项目之后,你也许想回顾下提交历史。 完成这个任务最简单而又有效的 工具是 git log 命令。 接下来的例子会用一个用于演示的 simplegit

记录每次更新到仓库 —— Git 学习笔记 10

记录每次更新到仓库 文章目录 文件的状态三个区域检查当前文件状态跟踪新文件取消跟踪(un-tracking)文件重新跟踪(re-tracking)文件暂存已修改文件忽略某些文件查看已暂存和未暂存的修改提交更新跳过暂存区删除文件移动文件参考资料 咱们接着很多天以前的 取得Git仓库 这篇文章继续说。 文件的状态 不管是通过哪种方法,现在我们已经有了一个仓库,并从这个仓