利用单纯形法进行线性规划求解

2024-01-24 22:12

本文主要是介绍利用单纯形法进行线性规划求解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

  • 作业要求

例16.5:

  • 理论推导

本作业题的目的分别利用两阶段修正单纯形法与两阶段仿射尺度法对线性规划问题进行求解。

两阶段修正单纯形法是一种求解线性规划问题的方法,它主要用于处理约束系数矩阵不包含单位矩阵(没有明显的基本可行解)的情况,也就是无法直接得到初始基可行解的情况。它分为两个阶段:

第一阶段:引入人工变量,构造一个只含有人工变量的目标函数,并求其最小值。如果最小值为零,则说明原问题有基可行解,可以进入第二阶段;如果最小值不为零,则说明原问题无可行解,算法终止。

第二阶段:去掉人工变量,恢复原目标函数,用单纯形法求解原问题的最优解。

两阶段仿射尺度法的基本原理同两阶段修正单纯形法,只不过将单纯形法计算的模块替换为仿射尺度的计算模块。

修正单纯形法是一种改进的单纯形法,它可以避免对大部分非基变量的计算,从而提高求解线性规划问题的效率。修正单纯形法的基本思想是,给定一个初始的可行基矩阵和其逆矩阵,通过不断地修正旧的可行基矩阵的逆矩阵,获得新的可行基矩阵的逆矩阵,进而完成单纯形法所需要的其他运算。修正单纯形法的主要步骤如下:

S1.针对初始基本可行解构造修正的单纯形表

S2.计算当前检验数,如果对所有非基变量都有检验数大于等于零,则停止运算,当前基本可行解即是最优解;否则进入下一步

S3.从小于零的检验数中选择一个检验数作为进基变量

S4.如果不存在正的约束系数,则停止运算,问题有无界解;否则计算出基变量和步长

S5.更新基本可行解和修正的单纯形表

S6.回到第二步继续迭代

最为基础的单纯形法的基本思想是从一个初始的基本可行解出发,通过不断地改进基本可行解,使目标函数值不断增大或减小,直到找到最优解为止。单纯形法的基本步骤如下:

S1.将线性规划问题化为标准形式,即目标函数为最大化,约束条件为等式,变量非负。

S2.找到一个初始的基本可行解,即满足约束条件和非负性的一组解,可以通过引入松弛变量或人工变量来构造。

S3.计算检验数,即目标函数中非基变量的系数减去基变量对应列的线性组合。检验数反映了非基变量对目标函数值的影响。

S4.判断是否达到最优解。如果所有检验数都小于等于零(最大化问题)或大于等于零(最小化问题),则当前基本可行解是最优解,算法停止;否则进入下一步。

S5.选择一个进基变量和一个出基变量。进基变量是检验数为正(最大化问题)或负(最小化问题)的非基变量中的一个,可以按照最大系数法、最小下标法等规则来选取。出基变量是当前基变量中的一个,可以按照最小比率法来选取,即使得进基变量增加后不会导致其他基变量为负。

S6.进行枢轴运算,即用高斯消元法将出基变量所在行的主元(即进基变量所在列的元素)化为1,然后用该行消去其他行中该列的元素,使得进基变量成为新的基变量,而出基变量成为新的非基变量。

S7.回到第三步继续迭代,直到达到最优解或发现问题无界或无可行解。

  • 实验结果

图1,图2分别展示了两题中迭代过程中值的变化情况。

图1 第一题的迭代过程

图2 第二题的迭代结果

附录

作业一

%main1.mA=[1 1 1 0; 5 3 0 -1];b=[4;8];c=[-3;-5;0;0];options(1)=1;format rat;tprevsimp(c,A,b,options);% revsimp.mfunction [x,v,Binv]=revsimp(c,A,b,v,Binv,options)if nargin ~= 6options = [];if nargin ~= 5disp('Wrong number of arguments.');return;endendformat compact;%format short e;options = foptions(options);print = options(1);n=length(c);m=length(b);cB=c(v(:));y0 = Binv*b;lambdaT=cB'*Binv;r = c'-lambdaT*A; %row vector of relative cost coefficientsif printdisp(' ');disp('Initial revised tableau [v B^(-1) y0]:');disp([v Binv y0]);disp('Relative cost coefficients:');disp(r);end %ifwhile ones(1,n)*(r' >= zeros(n,1)) ~= nif options(5) == 0;[r_q,q] = min(r);else%Bland’s ruleq=1;while r(q) >= 0q=q+1;endend %ifyq = Binv*A(:,q);min_ratio = inf;p=0;for i=1:m,if yq(i)>0if y0(i)/yq(i) < min_ratiomin_ratio = y0(i)/yq(i);p = i;end %ifend %ifend %forif p == 0disp('Problem unbounded');break;end %ifif print,disp('Augmented revised tableau [v B^(-1) y0 yq]:')disp([v Binv y0 yq]);disp('(p,q):');disp([p,q]);endaugrevtabl=pivot([Binv y0 yq],p,m+2);Binv=augrevtabl(:,1:m);y0=augrevtabl(:,m+1);v(p) = q;cB=c(v(:));lambdaT=cB'*Binv;r = c'-lambdaT*A; %row vector of relative cost coefficientsif print,disp('New revised tableau [v B^(-1) y0]:');disp([v Binv y0]);disp('Relative cost coefficients:');disp(r);end %ifend %whilex=zeros(n,1);x(v(:))=y0;%tprevsimpfunction [x,v]=tprevsimp(c,A,b,options)if nargin ~= 4options = [];if nargin ~= 3disp('Wrong number of arguments.');return;endendclc;format compact;%format short e;options = foptions(options);print = options(1);n=length(c);m=length(b);%Phase Iif printdisp(' ');disp('Phase I');disp('-------');endv=n*ones(m,1);for i=1:mv(i)=v(i)+i;end[x,v,Binv]=revsimp([zeros(n,1);ones(m,1)],[A eye(m)],b,v,eye(m),options);%Phase IIif printdisp(' ');disp('Phase II');disp('--------');end[x,v,Binv]=revsimp(c,A,b,v,Binv,options);if printdisp(' ');disp('Final solution:');disp(x');end

作业二

% main2.mA=[1 1 1 0; 5 3 0 -1];b=[4;8];c=[-3;-5;0;0];options(1)=0;tpaffscale(c,A,b,options);% tpaffscale.mfunction [x,N]=tpaffscale(c,A,b,options)if nargin ~= 4options = [];if nargin ~= 3disp('Wrong number of arguments.');return;Endend%clc;format compact;format short e;options = foptions(options);print = options(1);n=length(c);m=length(b);%Phase Iif print,disp(' ');disp('Phase I');disp('-------');endu = rand(n,1);v = b-A*u;if v ~= zeros(m,1),u = affscale([zeros(1,n),1]',[A v],b,[u' 1]',options);u(n+1) = [0];endif printdisp('')disp('Initial condition for Phase II:')disp(u)endif u(n+1) < options(2),%Phase IIu(n+1) = [];if printdisp(' ');disp('Phase II');disp('--------');disp('Initial condition for Phase II:');disp(u);end[x,N]=affscale(c,A,b,u,options);if nargout == 0disp('Final point =');disp(x');disp('Number of iterations =');disp(N);end %ifelsedisp('Terminating: problem has no feasible solution.');end% affscale.mfunction [x,N] = affscale(c,A,b,u,options);if nargin ~= 5options = [];if nargin ~= 4disp('Wrong number of arguments.');return;endendxnew=u;if length(options) >= 14if options(14)==0options(14)=1000*length(xnew);endelseoptions(14)=1000*length(xnew);end%if length(options) < 18options(18)=0.99; %optional step size%end%clc;format compact;format short e;options = foptions(options);print = options(1);epsilon_x = options(2);epsilon_f = options(3);max_iter=options(14);alpha=options(18);n=length(c);m=length(b);for k = 1:max_iter,xcurr=xnew;D = diag(xcurr);Abar = A*D;Pbar = eye(n) - Abar'*inv(Abar*Abar')*Abar;d = -D*Pbar*D*c;if d ~= zeros(n,1),nonzd = find(d<0);r = min(-xcurr(nonzd)./d(nonzd));elsedisp('Terminating: d = 0');break;endxnew = xcurr+alpha*r*d;if print,disp('Iteration number k =')disp(k); %print iteration index kdisp('alpha_k =');disp(alpha*r); %print alpha_kdisp('New point =');disp(xnew'); %print new pointend %ifif norm(xnew-xcurr) <= epsilon_x*norm(xcurr)disp('Terminating: Relative difference between iterates <');disp(epsilon_x);break;end %ifif abs(c'*(xnew-xcurr)) < epsilon_f*abs(c'*xcurr),disp('Terminating: Relative change in objective function <' );disp(epsilon_f);break;end %ifif k == max_iterdisp('Terminating with maximum number of iterations');end %ifend %forif nargout >= 1x=xnew;if nargout == 2N=k;endelsedisp('Final point =');disp(xnew');disp('Number of iterations =');disp(k);end %if

这篇关于利用单纯形法进行线性规划求解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/641176

相关文章

SpringSecurity6.0 如何通过JWTtoken进行认证授权

《SpringSecurity6.0如何通过JWTtoken进行认证授权》:本文主要介绍SpringSecurity6.0通过JWTtoken进行认证授权的过程,本文给大家介绍的非常详细,感兴趣... 目录项目依赖认证UserDetailService生成JWT token权限控制小结之前写过一个文章,从S

使用Jackson进行JSON生成与解析的新手指南

《使用Jackson进行JSON生成与解析的新手指南》这篇文章主要为大家详细介绍了如何使用Jackson进行JSON生成与解析处理,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 核心依赖2. 基础用法2.1 对象转 jsON(序列化)2.2 JSON 转对象(反序列化)3.

C#使用SQLite进行大数据量高效处理的代码示例

《C#使用SQLite进行大数据量高效处理的代码示例》在软件开发中,高效处理大数据量是一个常见且具有挑战性的任务,SQLite因其零配置、嵌入式、跨平台的特性,成为许多开发者的首选数据库,本文将深入探... 目录前言准备工作数据实体核心技术批量插入:从乌龟到猎豹的蜕变分页查询:加载百万数据异步处理:拒绝界面

Python使用自带的base64库进行base64编码和解码

《Python使用自带的base64库进行base64编码和解码》在Python中,处理数据的编码和解码是数据传输和存储中非常普遍的需求,其中,Base64是一种常用的编码方案,本文我将详细介绍如何使... 目录引言使用python的base64库进行编码和解码编码函数解码函数Base64编码的应用场景注意

Java进行文件格式校验的方案详解

《Java进行文件格式校验的方案详解》这篇文章主要为大家详细介绍了Java中进行文件格式校验的相关方案,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、背景异常现象原因排查用户的无心之过二、解决方案Magandroidic Number判断主流检测库对比Tika的使用区分zip

Java使用Curator进行ZooKeeper操作的详细教程

《Java使用Curator进行ZooKeeper操作的详细教程》ApacheCurator是一个基于ZooKeeper的Java客户端库,它极大地简化了使用ZooKeeper的开发工作,在分布式系统... 目录1、简述2、核心功能2.1 CuratorFramework2.2 Recipes3、示例实践3

基于Flask框架添加多个AI模型的API并进行交互

《基于Flask框架添加多个AI模型的API并进行交互》:本文主要介绍如何基于Flask框架开发AI模型API管理系统,允许用户添加、删除不同AI模型的API密钥,感兴趣的可以了解下... 目录1. 概述2. 后端代码说明2.1 依赖库导入2.2 应用初始化2.3 API 存储字典2.4 路由函数2.5 应

Python使用date模块进行日期处理的终极指南

《Python使用date模块进行日期处理的终极指南》在处理与时间相关的数据时,Python的date模块是开发者最趁手的工具之一,本文将用通俗的语言,结合真实案例,带您掌握date模块的六大核心功能... 目录引言一、date模块的核心功能1.1 日期表示1.2 日期计算1.3 日期比较二、六大常用方法详

Python使用DrissionPage中ChromiumPage进行自动化网页操作

《Python使用DrissionPage中ChromiumPage进行自动化网页操作》DrissionPage作为一款轻量级且功能强大的浏览器自动化库,为开发者提供了丰富的功能支持,本文将使用Dri... 目录前言一、ChromiumPage基础操作1.初始化Drission 和 ChromiumPage

Jackson库进行JSON 序列化时遇到了无限递归(Infinite Recursion)的问题及解决方案

《Jackson库进行JSON序列化时遇到了无限递归(InfiniteRecursion)的问题及解决方案》使用Jackson库进行JSON序列化时遇到了无限递归(InfiniteRecursi... 目录解决方案‌1. 使用 @jsonIgnore 忽略一个方向的引用2. 使用 @JsonManagedR