基于python的OpenCV快速入门——几何变换

2024-01-24 14:32

本文主要是介绍基于python的OpenCV快速入门——几何变换,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

基于python的OpenCV快速入门——几何变换

1、缩放

  • 在OpenCV中,使用函数cv2.resize()实现对图像的缩放
  • 语法格式为
dst = cv2.resize( src, dsize[ ,fx[, fy[ ,interpolation]]])
  • dst代表输出目标图像,该图像的类型与src相同,大小为dsize
  • src代表需要缩放的原始图像
  • dsize表示输出图像大小
  • fx代表水平方向的缩放比例
  • fy代表竖直方向的缩放比例
  • interpolation代表插值方式,具体如表
    在这里插入图片描述

在cv2.resize()函数中,目标图像大小既可以由dsize来表示,也可以由参数fx和fy表示

  • 情况一:

    • 如果指定参数dsize,则只靠dsize来决定目标图像大小
    • 需要注意的是dsize内的第一个参数对应缩放后图像的宽度(width,即参数cols,与参数fx相关),第2个参数对应缩放后图像的高度(height,即行数rows,与参数fy相关)
    • 指定参数dsize的值时,x方向的缩放大小(参数fx)为:
    (double)dsize.width/src.cols
    • 同时,y方向的缩放大小(参数fy)为:
    (double)dsize.height/src.rows
  • 情况二

    • 如果参数dsize的值是None,那么目标图像的大小通过参数fx和fy来决定。

      dsize = Size(round(fx*src.cols),round(fy*src.row))

2、翻转

  • 在OpenCV中,图像的反转采用函数cv2.flip()实现
  • 语法结构为
dst = cv2.flip(src , flipCode)
  • dst代表和原始图像具有相同大小类型的目标图像
  • src代表要处理的原始图像
  • flipCode代表旋转类型。该参数意义如图:
    在这里插入图片描述

3、仿射

  • 仿射变换是指图像可以通过一系列的几何变换来实现平移、旋转等多种操作。

  • OpenCV中的仿射函数为cv2.warpAffine(),其通过一个变换矩阵(映射矩阵)M实现变换,具体为

    • dst(x, y)=src(M11x+M12y+M13, M21x+M22y+M23)
  • 函数语法格式为:

    • dst = cv2.warpAffine( src, M, dsize [,flags[ ,borderMode[ ,bordeValue]]])
  • dst代表仿射后输出的图像,图像类型与原图像相同
  • dsize决定输出的大小
  • src代表要仿射的原图像
  • M代表一个2x3的变换矩阵。使用不同矩阵就可以实现不同的变换。
  • flags代表插值方式,默认为INTER_LINEAR。当该值是WARP_INVERSE_MAP时,意味着M是逆变换类型,实现从目标图像srt逆变换类型,实现从目标图像dst到原始图像src的逆变换。
  • borderMode代表类型,默认为BORDER_CONSTANT。当该值为BORDER_TRANSPARENT时,意味着目标图像内的值不做改变,这些值对应原始图像内的异常值。
  • borderValue代表边界值,默认为0.

该函数忽略其可选参数后的语法格式为:

dst = cv2.warpAffine( src, M ,dsize)

故其只与M有关,现在介绍通过不同的M实现不同的仿射矩阵转换

3.1平移

通过转换矩阵M实现将原始图像src转换为目标图像dst:
dst(x, y)=src(M11x+M12y+M13, M21x+M22y+M23)
将原始图像src向右侧移动100个像素、向下方移动200个像素,则其对应关系为:
dst (x, y)=src (x+ 100, y+ 200)
将上述表达式补充完整,即:
dst (x, y)=src (1·x+ 0·y+ 100, 0·x+ 1·y+ 200)
根据上述表达式,可以确定对应的转换矩阵M中各个元素的值为:

  • M11=1
  • M12=0
  • M13=100
  • M21=0
  • M22=1
  • M23=200
    将上述值代入转换矩阵M,得到:

在这里插入图片描述

具体代码为:

import cv2
import numpy as np
img = cv2.imread("Third.jpg")
height ,width = img.shape[:2]
x=100
y=200
M = np.float32([[1 , 0 ,x],[0 ,1 ,y]])
move = cv2.warpAffine(img , M ,(width,height))
cv2.imshow("original",img)
cv2.imshow("move",move)
cv2.waitKey()
cv2.destroyAllWindows()

3.2旋转

  • 可以通过cv2.getRotationMatrix2D()来获取旋转矩阵。

  • 该函数的语法格式为:

  • retavl = cv2.getRotationMatrix2D(center , angle , scale)
  • center为旋转中心
  • angle为旋转角度,正数表示逆时针旋转,负数表示顺时针旋转
  • scale为变换尺寸(缩放大小)

3.3更复杂的仿射变换

  • OpenCV提供了函数cv2.getAffineTransform()来生成仿射函数cv2.warpAffine()所使用的转换矩阵M。

  • 该函数的语法格式为:

  • retval = cv2.getAffineTransform(src ,dst)
    • src代表输入图像的三个点坐标
    • dst代表输出图像的三个点坐标

4、透视

第三节所讲的仿射变换可以将矩形映射为任意平行四边形,透视变换则可以将矩形映射为任意四边形。

  • 透视变换通过函数cv2.warpPerspective()实现
  • 该函数的语法是:
dst = cv2.warpPerspective( src, M, dsize[, flags[, borderMode[, borderValue]]] )
  • dst代表透视处理后的输出图像,该图像和原始图像具有相同的类型。dsize决定输出图像的实际大小。
  • src代表要透视的图像。
  • M代表一个3×3的变换矩阵。
  • dsize代表输出图像的尺寸大小。
  • flags代表插值方法,默认为INTER_LINEAR。当该值为WARP_INVERSE_MAP时,意味着M是逆变换类型,能实现从目标图像dst到原始图像src的逆变换。
  • borderMode代表边类型,默认为BORDER_CONSTANT。当该值为BORDER_TRANSPARENT时,意味着目标图像内的值不做改变,这些值对应原始图像内的异常值。
  • borderValue代表边界值,默认是0。

与仿射变换一样,同样可以使用一个函数来生成函数cv2.warpPerspective()所使用的转换矩阵。该函数是cv2.getPerspectiveTransform(),其语法格式为:

retval = cv2.getPerspectiveTransform( src, dst )
  • src代表输入图像的四个顶点的坐标。
  • dst代表输出图像的四个顶点的坐标。
  • 需要注意的是,src参数和dst参数是包含四个点的数组,与仿射变换函数cv2.getAffineTransform()中的三个点是不同的。实际使用中,我们可以根据需要控制src中的四个点映射到dst中的四个点。

这篇关于基于python的OpenCV快速入门——几何变换的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/639989

相关文章

Spring Security 从入门到进阶系列教程

Spring Security 入门系列 《保护 Web 应用的安全》 《Spring-Security-入门(一):登录与退出》 《Spring-Security-入门(二):基于数据库验证》 《Spring-Security-入门(三):密码加密》 《Spring-Security-入门(四):自定义-Filter》 《Spring-Security-入门(五):在 Sprin

python: 多模块(.py)中全局变量的导入

文章目录 global关键字可变类型和不可变类型数据的内存地址单模块(单个py文件)的全局变量示例总结 多模块(多个py文件)的全局变量from x import x导入全局变量示例 import x导入全局变量示例 总结 global关键字 global 的作用范围是模块(.py)级别: 当你在一个模块(文件)中使用 global 声明变量时,这个变量只在该模块的全局命名空

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

电脑桌面文件删除了怎么找回来?别急,快速恢复攻略在此

在日常使用电脑的过程中,我们经常会遇到这样的情况:一不小心,桌面上的某个重要文件被删除了。这时,大多数人可能会感到惊慌失措,不知所措。 其实,不必过于担心,因为有很多方法可以帮助我们找回被删除的桌面文件。下面,就让我们一起来了解一下这些恢复桌面文件的方法吧。 一、使用撤销操作 如果我们刚刚删除了桌面上的文件,并且还没有进行其他操作,那么可以尝试使用撤销操作来恢复文件。在键盘上同时按下“C

【Python编程】Linux创建虚拟环境并配置与notebook相连接

1.创建 使用 venv 创建虚拟环境。例如,在当前目录下创建一个名为 myenv 的虚拟环境: python3 -m venv myenv 2.激活 激活虚拟环境使其成为当前终端会话的活动环境。运行: source myenv/bin/activate 3.与notebook连接 在虚拟环境中,使用 pip 安装 Jupyter 和 ipykernel: pip instal

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

数论入门整理(updating)

一、gcd lcm 基础中的基础,一般用来处理计算第一步什么的,分数化简之类。 LL gcd(LL a, LL b) { return b ? gcd(b, a % b) : a; } <pre name="code" class="cpp">LL lcm(LL a, LL b){LL c = gcd(a, b);return a / c * b;} 例题:

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

Java 创建图形用户界面(GUI)入门指南(Swing库 JFrame 类)概述

概述 基本概念 Java Swing 的架构 Java Swing 是一个为 Java 设计的 GUI 工具包,是 JAVA 基础类的一部分,基于 Java AWT 构建,提供了一系列轻量级、可定制的图形用户界面(GUI)组件。 与 AWT 相比,Swing 提供了许多比 AWT 更好的屏幕显示元素,更加灵活和可定制,具有更好的跨平台性能。 组件和容器 Java Swing 提供了许多

【IPV6从入门到起飞】5-1 IPV6+Home Assistant(搭建基本环境)

【IPV6从入门到起飞】5-1 IPV6+Home Assistant #搭建基本环境 1 背景2 docker下载 hass3 创建容器4 浏览器访问 hass5 手机APP远程访问hass6 更多玩法 1 背景 既然电脑可以IPV6入站,手机流量可以访问IPV6网络的服务,为什么不在电脑搭建Home Assistant(hass),来控制你的设备呢?@智能家居 @万物互联