统计学习方法:罗杰斯特回归及Tensorflow入门

2024-01-24 08:40

本文主要是介绍统计学习方法:罗杰斯特回归及Tensorflow入门,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

作者:桂。

时间:2017-04-21  21:11:23

链接:http://www.cnblogs.com/xingshansi/p/6743780.html 


前言

看到最近大家都在用Tensorflow,一查才发现火的不行。想着入门看一看,Tensorflow使用手册第一篇是基于MNIST的手写数字识别的,用到softmax regression,而这个恰好与我正在看的《统计信号处理》相关。本文借此梳理一下:

  1)罗杰斯特回归

  2)Softmax Regression

  3)基于Tensorflow的MNIST手写数字识别框架

内容为自己的学习记录,其中多有借鉴他人的地方,最后一并给出链接。

一、罗杰斯特回归(Logistic Regression)

  A-问题描述

 一般说的Logistic回归,是指二分类问题。

对于连续的变量X,如果说它服从Logistic回归,则:

对应概率密度以及分布函数:

F(x)更像是一个threshold,f(x)的表达式也利于求导。

定义Logistic 回归模型

为输入,为对应输出,二项Logistic回归对应如下模型:

 

联系到之前写的感知机:

分类时,对应概率:

为正的概率大,为负的概率小,这个指数有点像把正/负→进行指数处理,这样就容易理解了。

有时为了表示方便,记:,则表达式简化为:

为什了叫Logistic regression呢?

这样明显是一个线性回归的表达式。

  B-理论分析

对于参数的求解,同感知机一样,就是求解w。利用最大似然求解:

 

定义sigmoid函数:

准则函数重新写为:

可以借助梯度下降或者牛顿法,这几个方法之前已经有过介绍。

利用求解得到的w,即可以进行概率判断,哪个概率大就判给哪个类别,整个思路与感知机也是一样的:

  C-理论应用

用一个code说明其工作原理,还是借助之前感知器用的例子,因为Logistic回归可以认为是Softmax回归的特例,这里借用softmax框架给出对应代码:

%Logistic regression
clear all; close all; clc;
%Every category samples
N = 100;
X = [randn(N,2)+2*ones(N,2);...randn(N,2)-2*ones(N,2)];
figure;
subplot 121
label = [ones(N,1);2*ones(N,1)];
plot(X(label==1,1),X(label==1,2),'b.');hold on;
plot(X(label==2,1),X(label==2,2),'r.');hold on;
%%Train
numClass = 2;
parm.learningRate = 0.5;
pram.iter = 5000;
parm.precost = 0;
X = [ones(size(X,1),1), X]';
[nfeatures, nsamples] = size(X);
W = zeros(nfeatures, numClass);
% 1, 2, 3 -> 001, 010, 100.
groundTruth = full(sparse(label, 1:nsamples, 1));
for i = 1:pram.iterrsp = W'*X;rsp = bsxfun(@minus, rsp, max(rsp, [], 1));rsp = exp(rsp);prob = bsxfun(@rdivide, rsp, sum(rsp));% compute gradient based on current probabilitygrad = - X * (groundTruth - prob)' / nsamples ;% update WW(:,2:end) = W(:,2:end) - parm.learningRate * grad(:,2:end);% compute costlogProb = log(prob);idx = sub2ind(size(logProb), label', 1:size(logProb, 2));parm.cost = - sum(logProb(idx)) / nsamples;if i~=0 && abs(parm.cost - parm.precost) / parm.cost <= 1e-4break;endparm.precost = parm.cost;
end
%Predict
rsp = W' * X; 
[~, prediction] = max(rsp, [], 1); 
subplot 122
X = X(2:end,:)';
plot(X(prediction==1,1),X(prediction==1,2),'b.');hold on;
plot(X(prediction==2,1),X(prediction==2,2),'r.');hold on;
x = -5:.1:5;
b = W(1,2);
y = -W(2,2)/W(3,2)*x-b/W(3,2);
plot(x,y,'k','linewidth',2);

  对应结果图:

 

二、Softmax 回归

 Logistic回归分析的是两类,对于多类的情形,通常称为:Softmax 回归。基于概率所以soft,概率中最大值所以Max。

其实这个式子可以理解为Y=K时,$w_k*x = 0$,上面式子可以表述为,为了与下面表述一致,这里w改为$\theta$表示:

假设样本个数为m,同logistic回归类似,Softmax准则函数可以写为:

进一步写为:

 思路同Logistic回归,同样利用梯度下降/牛顿-Rapson可以求解。求解出w:

其中,

分类的思路与Logistic回归也是完全一致。另外在求解的时候,可以发现:

求解的时候,都减去一个数,是不影响结果的。前面提到Y=K时,$w_k*x = 0$,其实有一个为零就行,哪一类是无所谓的,所以优化只优化K-1,给出代码:

%Test Softmax Regression
clear all; close all; clc;
N = 100;
X = [randn(N,2)+5*ones(N,2);...randn(N,2)-1*ones(N,2);...randn(N,2)-4*ones(N,2)];
figure;
subplot 121
label = [ones(N,1);2*ones(N,1);3*ones(N,1)];
plot(X(label==1,1),X(label==1,2),'b.');hold on;
plot(X(label==2,1),X(label==2,2),'r.');hold on;
plot(X(label==3,1),X(label==3,2),'k.');hold on;
title('Orignal Data')
%%Train
numClass = 3;
learningRate = 0.5;
X = [ones(size(X,1),1), X]';
[nfeatures, nsamples] = size(X);
W = zeros(nfeatures, numClass);
% 1, 2, 3 -> 001, 010, 100.
groundTruth = full(sparse(label, 1:nsamples, 1));
iter = 5000;
precost = 0;
for i = 1:iterrsp = W'*X;rsp = bsxfun(@minus, rsp, max(rsp, [], 1));rsp = exp(rsp);prob = bsxfun(@rdivide, rsp, sum(rsp));% compute gradient based on current probabilitygrad = - X * (groundTruth - prob)' / nsamples ;% update WW(:,2:end) = W(:,2:end) - learningRate * grad(:,2:end);% compute costlogProb = log(prob);idx = sub2ind(size(logProb), label', 1:size(logProb, 2));cost = - sum(logProb(idx)) / nsamples;if i~=0 && abs(cost - precost) / cost <= 1e-4break;endprecost = cost;
end
%Predict
rsp = W' * X; 
[~, prediction] = max(rsp, [], 1); 
subplot 122
X = X(2:end,:)';
plot(X(prediction==1,1),X(prediction==1,2),'b.');hold on;
plot(X(prediction==2,1),X(prediction==2,2),'r.');hold on;
plot(X(prediction==3,1),X(prediction==3,2),'k.');hold on;
title('Prediction')

 对应结果(线性可分时,结果正确,线性不可分时,边界点容易出现错误,如下图):

而实际应用中,我们不愿将任何一个$\theta$直接置零,而是保留所有,但此时我们需要对代价函数做一个改动:加入权重衰减。准则函数变为:

这个时候只要将上面对应的code按如下修改即可:

    grad = - X * (groundTruth - prob)' / nsamples +.02 * W;%lamdba = 0.02
%     grad = - X * (groundTruth - prob)' / nsamples ;% update W
%     W(:,2:end) = W(:,2:end) - learningRate * grad(:,2:end);W = W - learningRate * grad;

 

三、基于Tensorflow的MNIST手写数字识别

 MNIST数据库是一个手写数字识别数据库,

MNIST(Mixed National Institude of Standards and Technology database),由几万张图片组成,其中每个照片像素为28*28(在读取时已经被拉成28*28=784的向量了),训练数据集train:55000个样本,验证数据集validation:5000个样本,测试数据集:10000个样本。

首先分别读取训练和测试数据:

import numpy as np
import matplotlib.pyplot as plt
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)

  先看看数据长什么样,任意读取一张图片:

#imshow data
imgTol = mnist.train.images
img = np.reshape(imgTol[1,:],[28,28])
plt.imshow(img)

  

大概就是这个样子(其实是个gray图).

下面开始对数据进行基于Softmax Regression的处理。

首先创建一个会话(session),为什么需要创建session可以参考Tensorflow基本用法:

import tensorflow as tf
sess = tf.InteractiveSession()

  通过为输入图像和目标输出类别创建节点,来开始构建计算图:

sess = tf.InteractiveSession()
x = tf.placeholder("float", shape=[None, 784])
y_ = tf.placeholder("float", shape=[None, 10])

  其中'None'表示该维度大小不指定。

我们现在为模型定义权重W和偏置b。可以将它们当作额外的输入量,但是TensorFlow有一个更好的处理方式:变量。一个变量代表着TensorFlow计算图中的一个值,能够在计算过程中使用,甚至进行修改。在机器学习的应用过程中,模型参数一般用Variable来表示:

W = tf.Variable(tf.zeros([784,10]))
b = tf.Variable(tf.zeros([10]))

  变量需要通过seesion初始化后,才能在session中使用。这一初始化步骤为,为初始值指定具体值(本例当中是全为零),并将其分配给每个变量,可以一次性为所有变量完成此操作:

sess.run(tf.initialize_all_variables())

  初始化完成后,接下来可以实现Softmax Regression了:

y = tf.nn.softmax(tf.matmul(x,W) + b)

  softmax是tf.nn下的一个函数,tf.nn包含了很多神经网络的组件,tf.matmul在tensorflow里的意义是矩阵相乘。给出损失函数(交叉熵)

交叉熵没听过其实也不要紧,Maximum Likelihood(ML, 最大似然)估计应该都知道吧?

其中N为样本总数,且

我们频数以及频率是观测得到的,如何估计概率呢?我们通常用最大似然:

如果变形一下呢?同除以N:

最大似然估计不就是最小交叉熵估计?另一方面,交叉熵对误差的衡量类似联合概率密度的作用。给出对应code:

cross_entropy = -tf.reduce_sum(y_*tf.log(y))

  reduce.sum为求和,reduce.mean为求取均值。有了准则函数以及理论框架,利用梯度下降进行训练:

train_step = tf.train.GradientDescentOptimizer(0.01).minimize(cross_entropy)

  这里利用小批量梯度mini-batch下降,batch = 50个训练样本:

for i in range(1100):batch = mnist.train.next_batch(50)train_step.run(feed_dict={x: batch[0], y_: batch[1]})

  训练后进行预测并打印:

correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
print(sess.run(accuracy, feed_dict={x: mnist.test.images, y_: mnist.test.labels}))

  给出总的code:

import numpy as np
import matplotlib.pyplot as plt
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)#imshow data
#imgTol = mnist.train.images
#img = np.reshape(imgTol[1,:],[28,28])
#plt.imshow(img)sess = tf.InteractiveSession()
x = tf.placeholder("float", shape=[None, 784])
y_ = tf.placeholder("float", shape=[None, 10])
W = tf.Variable(tf.zeros([784,10]))
b = tf.Variable(tf.zeros([10]))
sess.run(tf.global_variables_initializer())
y = tf.nn.softmax(tf.matmul(x,W) + b)
cross_entropy = -tf.reduce_sum(y_*tf.log(y))
train_step = tf.train.GradientDescentOptimizer(0.01).minimize(cross_entropy)
for i in range(1100):batch = mnist.train.next_batch(50)train_step.run(feed_dict={x: batch[0], y_: batch[1]})correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
print(sess.run(accuracy, feed_dict={x: mnist.test.images, y_: mnist.test.labels}))

  预测结果为:91.56%.

参考:

  • Softmax regression:http://deeplearning.stanford.edu/wiki/index.php/Softmax_Regression
  • 李航:《统计学习方法》
  • Tensorflow官网文档:https://www.tensorflow.org/get_started/mnist/beginners
  • http://tensorfly.cn/tfdoc/tutorials/mnist_pros.html

这篇关于统计学习方法:罗杰斯特回归及Tensorflow入门的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/639122

相关文章

Java function函数式接口的使用方法与实例

《Javafunction函数式接口的使用方法与实例》:本文主要介绍Javafunction函数式接口的使用方法与实例,函数式接口如一支未完成的诗篇,用Lambda表达式作韵脚,将代码的机械美感... 目录引言-当代码遇见诗性一、函数式接口的生物学解构1.1 函数式接口的基因密码1.2 六大核心接口的形态学

Python实现文件下载、Cookie以及重定向的方法代码

《Python实现文件下载、Cookie以及重定向的方法代码》本文主要介绍了如何使用Python的requests模块进行网络请求操作,涵盖了从文件下载、Cookie处理到重定向与历史请求等多个方面,... 目录前言一、下载网络文件(一)基本步骤(二)分段下载大文件(三)常见问题二、requests模块处理

Linux内存泄露的原因排查和解决方案(内存管理方法)

《Linux内存泄露的原因排查和解决方案(内存管理方法)》文章主要介绍了运维团队在Linux处理LB服务内存暴涨、内存报警问题的过程,从发现问题、排查原因到制定解决方案,并从中学习了Linux内存管理... 目录一、问题二、排查过程三、解决方案四、内存管理方法1)linux内存寻址2)Linux分页机制3)

vue基于ElementUI动态设置表格高度的3种方法

《vue基于ElementUI动态设置表格高度的3种方法》ElementUI+vue动态设置表格高度的几种方法,抛砖引玉,还有其它方法动态设置表格高度,大家可以开动脑筋... 方法一、css + js的形式这个方法需要在表格外层设置一个div,原理是将表格的高度设置成外层div的高度,所以外层的div需要

Python判断for循环最后一次的6种方法

《Python判断for循环最后一次的6种方法》在Python中,通常我们不会直接判断for循环是否正在执行最后一次迭代,因为Python的for循环是基于可迭代对象的,它不知道也不关心迭代的内部状态... 目录1.使用enuhttp://www.chinasem.cnmerate()和len()来判断for

Java循环创建对象内存溢出的解决方法

《Java循环创建对象内存溢出的解决方法》在Java中,如果在循环中不当地创建大量对象而不及时释放内存,很容易导致内存溢出(OutOfMemoryError),所以本文给大家介绍了Java循环创建对象... 目录问题1. 解决方案2. 示例代码2.1 原始版本(可能导致内存溢出)2.2 修改后的版本问题在

四种Flutter子页面向父组件传递数据的方法介绍

《四种Flutter子页面向父组件传递数据的方法介绍》在Flutter中,如果父组件需要调用子组件的方法,可以通过常用的四种方式实现,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录方法 1:使用 GlobalKey 和 State 调用子组件方法方法 2:通过回调函数(Callb

一文详解Python中数据清洗与处理的常用方法

《一文详解Python中数据清洗与处理的常用方法》在数据处理与分析过程中,缺失值、重复值、异常值等问题是常见的挑战,本文总结了多种数据清洗与处理方法,文中的示例代码简洁易懂,有需要的小伙伴可以参考下... 目录缺失值处理重复值处理异常值处理数据类型转换文本清洗数据分组统计数据分箱数据标准化在数据处理与分析过

Java中Object类的常用方法小结

《Java中Object类的常用方法小结》JavaObject类是所有类的父类,位于java.lang包中,本文为大家整理了一些Object类的常用方法,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. public boolean equals(Object obj)2. public int ha

golang1.23版本之前 Timer Reset方法无法正确使用

《golang1.23版本之前TimerReset方法无法正确使用》在Go1.23之前,使用`time.Reset`函数时需要先调用`Stop`并明确从timer的channel中抽取出东西,以避... 目录golang1.23 之前 Reset ​到底有什么问题golang1.23 之前到底应该如何正确的