【K8S 云原生】K8S之HPA自动扩缩容、命名空间资源限制、容器抓包

本文主要是介绍【K8S 云原生】K8S之HPA自动扩缩容、命名空间资源限制、容器抓包,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

一、HPA概述

1、概念

2、两个重要的组件:

3、HPA的规则:

4、pod的副本数扩容有两种方式:

4.1、手动扩缩容,修改副本数:

4.2、自动扩缩容HPA

二、实验部署:

1、部署HPA

2、实现自动扩缩容

三、命名空间资源限制:

1、对命名空间进行限制

2、对命名空间中pod整体进行限制:

四、总结:

五、补充:哪些服务会部署在K8S当中:

六、K8S容器的抓包:

第一步:获取容器的container id

第二步:将container id解析为pid

第三步:进入容器内的网络命名空间

第四步:tcpdump抓包

补充:Linux中真机抓包

容器内抓包:


一、HPA概述

1、概念

Horizontal Pod Autoscaling:Pod的水平自动伸缩

K8S自带的模块

是根据Pod占用CPU的比率,到达一定的阀值,会触发伸缩机制

 HPA(Horizontal Pod Autoscaling)Pod 水平自动伸缩,Kubernetes 有一个 HPA 的资源,HPA 可以根据 CPU 利用率自动伸缩一个 Replication Controller、 Deployment 或者Replica Set 中的 Pod 数量。

1、HPA是基于kube-controll-manager服务,周期性的检测Pod的CPU使用率,默认30s检测一次

2、HPA和副本控制器replication controller以及deployment controller,都属于K8S的资源对象。通过跟踪分析副本控制器和deployment的Pod的负载变化,针对性的调整目标Pod的副本数。

阀值:正常情况下,Pod的副本数,以及达到阀值后,Pod的扩容最大数量

3、metrics-server部署到集群中,由他来对外提供度量的数据

2、两个重要的组件:

replication controller  副本控制器,控制的是Pod的副本数

deployment controller 节点控制器,部署Pod

HPA控制副本的数量以及控制如何部署Pod

3、HPA的规则:

1、定义pod的时候必须要有资源限制,否则HPA无法进行监控

2、扩容时即时的,只要超过阀值会立刻扩容,不是立刻扩容到最大副本数。他会在最小值和最大值之间波动。如果扩容的数量满足了需求,不会在扩容

3、缩容时缓慢的。如果业务的峰值较高,回收的策略太积极的话,可能会产生业务的崩溃。缩容的速度比较慢,扩容比较快

原因:周期性的获取数据,缩容的机制问题

4、pod的副本数扩容有两种方式:

4.1、手动扩缩容,修改副本数:

kubectl scale命令行扩缩容

kubectl edit deployment进入该replicas

进yaml文件改replicas,apply -f 部署更新

4.2、自动扩缩容HPA

HPA监控的是CPU,根据CPU自动扩缩容。扩的比较快(要立即满足需求),缩的比较慢(方式业务崩溃)

二、实验部署:

1、部署HPA

将镜像包拖到所有节点
docker load -i metrics-server.tar上传 components.yaml
配置文件改好了,直接用即可kubectl apply -f components.yamlkubectl get pod -n kube-system

kubectl top node
#查看所有节点占用主机资源的情况kubectl top pod
#查看pod占用主机资源的情况

2、实现自动扩缩容

实现:
vim hpa-test.yamlapiVersion: apps/v1
kind: Deployment
metadata:name: centos-testlabels:test: centos1
spec:replicas: 1selector:matchLabels:test: centos1template:metadata:labels:test: centos1spec:containers:- name: centosimage: centos:7command: ["/bin/bash", "-c", "yum -y install epel-release;yum -y install stress;sleep 3600"]resources:limits:cpu: "1"memory: 512Mi---
apiVersion: autoscaling/v1
kind: HorizontalPodAutoscaler
metadata:name: hpa-centos7
spec:scaleTargetRef:
#指定要自动缩放的目标对象,这里是一个DeploymentapiVersion: apps/v1kind: Deploymentname: centos-test
#标签和上面deployment对应minReplicas: 1maxReplicas: 5
#自动扩缩的副本数,最大5,最小1targetCPUUtilizationPercentage: 50
#CPU利用率的阀值50%

进容器:

压力测试

容器占满两个CPU

因为他Limit资源限制最大使用是1个CPU,所以这里虽然压力2个,但是最多是能占一个CPU

#查看pod占用CPU状态
kubectl top pod

#kubectl get hpa -w
动态查看HPA

这里资源超过设定阀值后,会动态扩容,减轻资源压力。

比如,这里是一个pod的最大CPU使用率是1000,阀值是500,这里给1000的压力,超过500,选择扩容

扩容一个pod后,最大使用率是2000,压力是1000,加上进程的本身资源使用,他的CPU使用率实际上是超过50%,也就是1000m的,继而选择再次扩容

再扩容一个之后,三个pod最大使用率3000,阀值变成1500。给的CPU是1000,不足1500

所以不再继续扩容

所以这里显示的副本数停在了3个,而CPU使用率是33%,1000/3000

停止压力,测试缩容:

当CPU使用率不足阀值时,pod会缓慢、谨慎的缩容

扩容很快,缩容很慢

三、命名空间资源限制:

除了pod的资源限制外,还有命名空间的资源限制

K8S集群部署pod的最大数量:10000

busybox:就是最小化的centos 4M

1、对命名空间进行限制

apiVersion: apps/v1
kind: Deployment
metadata:name: centos-test2namespace: test1labels:test: centos2
spec:replicas: 4selector:matchLabels:test: centos2template:metadata:labels:test: centos2spec:containers:- name: centosimage: centos:7command: ["/bin/bash", "-c", "yum -y install epel-release;yum -y install stress;sleep 3600"]resources:limits:cpu: 1000mmemory: 512Mi---apiVersion: v1
kind: ResourceQuota
metadata:name: ns-resourcenamespace: test1
spec:hard:
#硬限制pods: "5"
#表示在这个命名空间内只能部署10个podrequests.cpu: "2"requests.memory: 1Gilimits.cpu: "4"
#最多能占用4个CPUlimits.memory: 2Gi
#最多能占用内存2Gconfigmaps: "10"
#当前命名空间内创建最大的configmap的数量10个persistentvolumeclaims: "4"
#当前命名空间只能使用4个PVCsecrets: "9"
#创建加密的secrets,只能9个services: "5"
#创建service,只能5个services.nodeports: "2"
#NodePort类型的svc只能2个

限制pod数量和service数量:

apiVersion: apps/v1
kind: Deployment
metadata:name: centos-test2namespace: test2labels:test: centos2
spec:replicas: 6selector:matchLabels:test: centos2template:metadata:labels:test: centos2spec:containers:- name: centosimage: centos:7command: ["/bin/bash", "-c", "yum -y install epel-release;yum -y install stress;sleep 3600"]resources:limits:cpu: 1000mmemory: 512Mi---apiVersion: v1
kind: ResourceQuota
metadata:name: ns-resourcenamespace: test2
spec:hard:
#硬限制pods: "5"services: "3"services.nodeports: "2"

设置完限制只能在这个命名空间中只能有5个pod和3个service

kubectl describe ns test1
#查看命名空间的资源限制

2、对命名空间中pod整体进行限制:

对整个命名空间中的pod进行全局的限制(内存、CPU),不够灵活

工作中还是对每个pod进行自定义限制


 

apiVersion: apps/v1
kind: Deployment
metadata:name: centos-testnamespace: test2labels:test: centos
spec:replicas: 1selector:matchLabels:test: centostemplate:metadata:labels:test: centosspec:containers:- name: centos1image: centos:7command: ["/bin/bash","-c","yum -y install epel-release.noarch; yum -y install stress;sleep 3600"]resources:limits:cpu: "1"memory: 512Mi
---
apiVersion: v1
kind: LimitRange
#表示使用limitrange来进行资源控制
metadata:name: test2-limitnamespace: test2
spec:limits:- default:memory: 512Micpu: "1"defaultRequest:memory: 256Micpu: "0.5"type: Container
#default: 相当于limit
#defaultRequest: 相当于request
#type: Container pod pvc(很少有)

四、总结:

HPA自动扩缩容

命名空间限制:

第一种:resourcequote

可以对命名空间进行限制

第二种:LimitRange

直接声明命名空间中创建pod,容器的资源限制,这时一种统一限制。所有的pod都受这个条件约束

限制方式:

1、pod资源限制,一般是创建的时候声明好的,在工作中是必加选项

resources:

  limt

2、命名空间资源限制,对命名空间使用CPU和内存一定会做限制

resourcequote

3、命名空间统一资源限制,掌握即可,工作中一般配置前两个

LimitRange

在工作中一定对pod和命名空间资源(CPU和内存)进行限制

防止整个集群的资源,被一个服务或者命名空间占满

五、补充:哪些服务会部署在K8S当中:

中间键:一定K8S部署

kafka:6个pod

redis:3个pod

哪些服务会部署在K8S当中:

中间键:一定K8S部署

kafka:6个pod

redis:3个pod

业务服务:一定K8S部署

自定义的镜像创建的容器:

前端:50%容器化部署,前面两个容器化这个大概率容器化部署

nginx:3-6个pod

一般一共12个pod左右,每个都是独立的业务

mysql是实际部署的

ELK可能docker可能docker可能真机部署

一定在K8S部署的:

1、自定义的镜像创建的容器:

2、前端:50%容器化部署,前面两个容器化这个大概率容器化部署

nginx:3-6个pod

一般一共12个pod左右,每个都是独立的业务

mysql是实际部署的

ELK可能docker可能docker可能真机部署

六、K8S容器的抓包:

K8S容器抓包:

第一步:获取容器的container id

kubectl describe pod nginx1-6f44454d69-shqcr

第二步:将container id解析为pid

docker inspect --format '{{.State.Pid}}' 0bd8136bfb03b0717bf72c3793b9e4cfa15d809e85389a2f14f7b7ae0a78e172

第三步:进入容器内的网络命名空间

nsenter -n -t50148
#进入容器内的网络命名空间ip addr
#查看网卡设备名

第四步:tcpdump抓包

补充:Linux中真机抓包

Linux能否抓包????????

tcpdump(系统自带的)

指定抓包

动态抓包,一直获取,手动停止

只抓不分析

tcpdump tcp -i ens33 -t -s0 -c 10 and dst port 80 and src net 192.168.10.0/24 -w ./target.captcpdump 固定格式
tcp 抓取tcp协议
-i 只抓经过ens33的数据包
-t 不显示时间戳
-s0 抓完整的数据包
-c 指定抓包的个数
dst port 80 访问httpd 80
src net 192.168.10.0/24   源地址来自192.168.10.0网段的ip
-w 抓包的数据,保存位置 
*.cap  Wireshark分析.cap 后缀的

容器内抓包:
tcpdump tcp -i eth0
#抓取tcp协议的数据包,指定经过eth0网卡

tcpdump icmp -i eth0
#抓取经过eth0网卡的icmp协议包

这篇关于【K8S 云原生】K8S之HPA自动扩缩容、命名空间资源限制、容器抓包的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/638642

相关文章

变量与命名

引言         在前两个课时中,我们已经了解了 Python 程序的基本结构,学习了如何正确地使用缩进来组织代码,并且知道了注释的重要性。现在我们将进一步深入到 Python 编程的核心——变量与命名。变量是我们存储数据的主要方式,而合理的命名则有助于提高代码的可读性和可维护性。 变量的概念与使用         在 Python 中,变量是一种用来存储数据值的标识符。创建变量很简单,

90、k8s之secret+configMap

一、secret配置管理 配置管理: 加密配置:保存密码,token,其他敏感信息的k8s资源 应用配置:我们需要定制化的给应用进行配置,我们需要把定制好的配置文件同步到pod当中容器 1.1、加密配置: secret: [root@master01 ~]# kubectl get secrets ##查看加密配置[root@master01 ~]# kubectl get se

poj 2135 有流量限制的最小费用最大流

题意: 农场里有n块地,其中约翰的家在1号地,二n号地有个很大的仓库。 农场有M条道路(双向),道路i连接着ai号地和bi号地,长度为ci。 约翰希望按照从家里出发,经过若干块地后到达仓库,然后再返回家中的顺序带朋友参观。 如果要求往返不能经过同一条路两次,求参观路线总长度的最小值。 解析: 如果只考虑去或者回的情况,问题只不过是无向图中两点之间的最短路问题。 但是现在要去要回

poj 3422 有流量限制的最小费用流 反用求最大 + 拆点

题意: 给一个n*n(50 * 50) 的数字迷宫,从左上点开始走,走到右下点。 每次只能往右移一格,或者往下移一格。 每个格子,第一次到达时可以获得格子对应的数字作为奖励,再次到达则没有奖励。 问走k次这个迷宫,最大能获得多少奖励。 解析: 拆点,拿样例来说明: 3 2 1 2 3 0 2 1 1 4 2 3*3的数字迷宫,走两次最大能获得多少奖励。 将每个点拆成两个

poj 2195 bfs+有流量限制的最小费用流

题意: 给一张n * m(100 * 100)的图,图中” . " 代表空地, “ M ” 代表人, “ H ” 代表家。 现在,要你安排每个人从他所在的地方移动到家里,每移动一格的消耗是1,求最小的消耗。 人可以移动到家的那一格但是不进去。 解析: 先用bfs搞出每个M与每个H的距离。 然后就是网络流的建图过程了,先抽象出源点s和汇点t。 令源点与每个人相连,容量为1,费用为

poj 3068 有流量限制的最小费用网络流

题意: m条有向边连接了n个仓库,每条边都有一定费用。 将两种危险品从0运到n-1,除了起点和终点外,危险品不能放在一起,也不能走相同的路径。 求最小的费用是多少。 解析: 抽象出一个源点s一个汇点t,源点与0相连,费用为0,容量为2。 汇点与n - 1相连,费用为0,容量为2。 每条边之间也相连,费用为每条边的费用,容量为1。 建图完毕之后,求一条流量为2的最小费用流就行了

K8S(Kubernetes)开源的容器编排平台安装步骤详解

K8S(Kubernetes)是一个开源的容器编排平台,用于自动化部署、扩展和管理容器化应用程序。以下是K8S容器编排平台的安装步骤、使用方式及特点的概述: 安装步骤: 安装Docker:K8S需要基于Docker来运行容器化应用程序。首先要在所有节点上安装Docker引擎。 安装Kubernetes Master:在集群中选择一台主机作为Master节点,安装K8S的控制平面组件,如AP

Spring框架5 - 容器的扩展功能 (ApplicationContext)

private static ApplicationContext applicationContext;static {applicationContext = new ClassPathXmlApplicationContext("bean.xml");} BeanFactory的功能扩展类ApplicationContext进行深度的分析。ApplicationConext与 BeanF

基于51单片机的自动转向修复系统的设计与实现

文章目录 前言资料获取设计介绍功能介绍设计清单具体实现截图参考文献设计获取 前言 💗博主介绍:✌全网粉丝10W+,CSDN特邀作者、博客专家、CSDN新星计划导师,一名热衷于单片机技术探索与分享的博主、专注于 精通51/STM32/MSP430/AVR等单片机设计 主要对象是咱们电子相关专业的大学生,希望您们都共创辉煌!✌💗 👇🏻 精彩专栏 推荐订阅👇🏻 单片机

Python3 BeautifulSoup爬虫 POJ自动提交

POJ 提交代码采用Base64加密方式 import http.cookiejarimport loggingimport urllib.parseimport urllib.requestimport base64from bs4 import BeautifulSoupfrom submitcode import SubmitCodeclass SubmitPoj():de