【ASOC全解析(三)】machine原理和实战

2024-01-23 22:36

本文主要是介绍【ASOC全解析(三)】machine原理和实战,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

【ASOC全解析(三)】machine原理和实战

  • 一、machine概述与原理
    • 1.1 machine的主要职责
    • 1.2 本文的主要内容
  • 二、machine程序示例
    • 完整的machine驱动代码示例
    • 扩展知识:SND_SOC_DAILINK_DEFS
      • 使用方法说明
      • 总结与其它说明

/*****************************************************************************************************************/

声明: 本博客内容均由https://blog.csdn.net/weixin_47702410原创,转载or引用请注明出处,谢谢!

创作不易,如果文章对你有帮助,麻烦点赞 收藏支持~感谢

/*****************************************************************************************************************/

一、machine概述与原理

在ASOC中,Machine层,也称为“机器层”或“板级层”,是ASoC架构中负责将Codec和Platform层连接起来的部分。它是ASoC中与硬件平台相关的部分,通常包含了特定于机器(如开发板或产品)的音频路由和控制逻辑。

1.1 machine的主要职责

Machine层的主要职责包括:

  • 定义音频路径:Machine层定义了音频数据在系统中的流动路径。这包括输入(如麦克风)和输出(如扬声器)设备的连接方式,以及它们如何与Codec设备进行交互。

  • 控制音频接口:Machine层负责管理和配置音频接口,例如I2S、PCM、AC97等,这些接口用于在Codec和SoC之间传输音频数据。

  • 音频路由和混音:Machine层定义了音频信号的路由,例如将哪个音频输入路由到哪个输出,以及如何混合不同的音频源。

  • DAPM(Dynamic Audio Power Management)配置:Machine层配置DAPM策略,以便在不使用某些音频组件时关闭它们的电源,从而节省能源。

  • 板级初始化代码:Machine层包含了特定于机器的初始化代码,这些代码在系统启动时执行,用于初始化音频硬件和ASoC组件。

  • 提供用户空间接口:Machine层通过ALSA提供了用户空间接口,允许应用程序控制音频硬件,例如调整音量、改变音频路由等。

Machine层通常是由设备制造商或社区开发者针对特定硬件平台编写的,因为它需要详细了解硬件的音频架构和功能。在Linux内核源代码中,Machine层的代码通常位于sound/soc/目录下的与特定板相关的子目录中。

Machine层的实现通常涉及到编写一个Machine驱动,这个驱动会注册一个snd_soc_card结构,该结构描述了音频卡的各种属性,包括DAI(Digital Audio Interface)链接、Codec信息、平台信息以及DAPM路由等。这个驱动还会处理与音频相关的平台特定事件,比如耳机插入检测或按钮控制等。

1.2 本文的主要内容

本文针对DAI的连接为主,进行相关的实践。即将所有组件驱动程序(例如Codec端、platform端和 DAI)粘合在一起的代码。

其它功能会关联ALSA Core层或者DAPM或者指定硬件相关的知识,后续有时间再另作文章介绍。

二、machine程序示例

针对DAI的连接,主要是有三个步骤:

  • 1、定义DAI_Link连接codec和platform
  • 2、定义声卡,需要定义snd_soc_card
  • 3、注册声卡

上面的这三点,主要是调用API函数snd_soc_register_card完成(这个函数很重要,但内容较多,后续有时间再出一版文章详细说明)

完整的machine驱动代码示例

#include <linux/init.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <sound/pcm.h>
#include <sound/pcm_params.h>
#include <sound/soc.h>SND_SOC_DAILINK_DEFS(mycodec,DAILINK_COMP_ARRAY(COMP_CPU("myplat.0")),DAILINK_COMP_ARRAY(COMP_CODEC("my_codec.0", "my_codec_dai")),DAILINK_COMP_ARRAY(COMP_PLATFORM("myplat.0")));static int my_card_init(struct snd_soc_pcm_runtime *rtd)
{printk("%s,line:%d\n",__func__,__LINE__);return 0;
}static int my_card_hw_params(struct snd_pcm_substream *substream,struct snd_pcm_hw_params *params) {struct snd_soc_pcm_runtime *rtd = substream->private_data;//struct snd_soc_dai *codec_dai = rtd->codec_dai;struct snd_soc_card *card = rtd->card;unsigned int freq;//int ret;int stream_flag;printk("%s,line:%d\n",__func__,__LINE__);switch (params_rate(params)) {case    8000:case    12000:case    16000:case    24000:case    32000:case    48000:case    96000:case    192000:freq = 24576000;break;case    11025:case    22050:case    44100:freq = 22579200;break;default:dev_err(card->dev, "invalid rate setting\n");return -EINVAL;}/* the substream type: 0->playback, 1->capture */stream_flag = substream->stream;return 0;
}static struct snd_soc_ops my_card_ops = {.hw_params = my_card_hw_params,
};static struct snd_soc_dai_link my_card_dai_link[] = {{.name       = "my-codec",.stream_name    = "MY-CODEC",SND_SOC_DAILINK_REG(mycodec),
/*SND_SOC_DAILINK_REG(mycodec)等效于.codec_name = "my_codec.0",.codec_dai_name = "my_codec_dai",.cpu_dai_name   = "myplat.0",.platform_name  = "myplat.0",
*/.init       = my_card_init,.ops        = &my_card_ops,},
};static struct snd_soc_card snd_soc_my_card = {.name           = "my-codec",.owner          = THIS_MODULE,.dai_link       = my_card_dai_link,.num_links      = ARRAY_SIZE(my_card_dai_link),
};static int mymachine_probe(struct platform_device *pdev) {int ret = 0;struct snd_soc_card *card = &snd_soc_my_card;printk("-----%s----\n",__func__);/* register the soc card */card->dev = &pdev->dev;ret = snd_soc_register_card(card);if (ret < 0) {dev_err(&pdev->dev, "snd_soc_register_card failed %d\n", ret);return -1;}return ret;
}static int mymachine_remove(struct platform_device *pdev){printk("-----%s----\n",__func__);return 0;
}static void mymachine_pdev_release(struct device *dev){printk("-----%s----\n",__func__);
}static struct platform_device mymachine_pdev = {.name           = "mymachine",.dev.release    = mymachine_pdev_release,
};static struct platform_driver mymachine_pdrv = {.probe      = mymachine_probe,.remove     = mymachine_remove,.driver     = {.name   = "mymachine",},
};static int __init mymachine_init(void)
{int ret;ret = platform_device_register(&mymachine_pdev);if (ret)return ret;ret = platform_driver_register(&mymachine_pdrv);if (ret)platform_device_unregister(&mymachine_pdev);return ret;
}static void __exit mymachine_exit(void)
{platform_driver_unregister(&mymachine_pdrv);platform_device_unregister(&mymachine_pdev);
}module_init(mymachine_init);
module_exit(mymachine_exit);
MODULE_LICENSE("GPL");

扩展知识:SND_SOC_DAILINK_DEFS

从Linux 5.x开始,Linux使用宏SND_SOC_DAILINK_REG快捷定义DAI_LINK中的有关codec和platform连接关系。

其本质和5.x之前的版本并无实质的变化,仅是在形式上采用了一种更加便捷的定义方法。相关源码主要参考“linux/v5.10.177/source/include/sound/soc.h“

本小节主要扩展解释一下下面的语句:

SND_SOC_DAILINK_DEFS(mycodec,DAILINK_COMP_ARRAY(COMP_CPU("myplat.0")),DAILINK_COMP_ARRAY(COMP_CODEC("my_codec.0", "my_codec_dai")),DAILINK_COMP_ARRAY(COMP_PLATFORM("myplat.0")));SND_SOC_DAILINK_REG(mycodec),

SND_SOC_DAILINK_DEFS的定义如下:

#define SND_SOC_DAILINK_DEFS(name, cpu, codec, platform...) \SND_SOC_DAILINK_DEF(name##_cpus, cpu);          \SND_SOC_DAILINK_DEF(name##_codecs, codec);      \SND_SOC_DAILINK_DEF(name##_platforms, platform)

代入得到:

#define SND_SOC_DAILINK_DEFS(mycodec, COMP_CPU("myplat.0"), COMP_CODEC("my_codec.0", "my_codec_dai"), COMP_PLATFORM("myplat.0"))    \
//...

再展开上面的三个宏可以得到:

#define SND_SOC_DAILINK_DEFS(mycodec, { .dai_name = "myplat.0", }, { .name = "my_codec.0", .dai_name = "my_codec_dai", }, { .name = "myplat.0" })   \
//...

将上面的结果完整代入SND_SOC_DAILINK_DEF,即可以得到完整的SND_SOC_DAILINK_DEFS展开结果:

    SND_SOC_DAILINK_DEF(mycodec_cpus,  { .dai_name = "myplat.0", });            \SND_SOC_DAILINK_DEF(mycodec_codecs, { .name = "my_codec.0", .dai_name = "my_codec_dai", });     \SND_SOC_DAILINK_DEF(mycodec_platforms, { .name = "myplat.0" })

进一步代入SND_SOC_DAILINK_DEF可以得到:

static struct snd_soc_dai_link_component mycodec_cpus[] = { .dai_name = "myplat.0", };static struct snd_soc_dai_link_component mycodec_codecs[]   = {.name = "my_codec.0", .dai_name = "my_codec_dai", };static struct snd_soc_dai_link_component mycodec_platforms[]    = {.name = "myplat.0" };

使用方法说明

使用方法

SND_SOC_DAILINK_REG(name),

这个宏展开后如下:

    .cpus           = mycodec_cpus,.num_cpus       = ARRAY_SIZE(mycoded_cpus),.codecs         = mycodec_codecs,.num_codecs     = ARRAY_SIZE(mycodec_codecs),.platforms      = mycodec_platforms,.num_platforms  = ARRAY_SIZE(mycodec_platforms),

总结与其它说明

SND_SOC_DAILINK_DEFS(mycodec,DAILINK_COMP_ARRAY(COMP_CPU("myplat.0")),DAILINK_COMP_ARRAY(COMP_CODEC("my_codec.0", "my_codec_dai")),DAILINK_COMP_ARRAY(COMP_PLATFORM("myplat.0")));static struct snd_soc_dai_link my_card_dai_link[] = {{.name       = "my-codec",.stream_name    = "MY-CODEC",SND_SOC_DAILINK_REG(mycodec),.init       = my_card_init,.ops        = &my_card_ops,},
};//***************************************************************
//最终展开是:
static struct snd_soc_dai_link_component mycodec_cpus[] = { .dai_name = "myplat.0", 
};static struct snd_soc_dai_link_component mycodec_codecs[]   = {.name = "my_codec.0", .dai_name = "my_codec_dai", 
};static struct snd_soc_dai_link_component mycodec_platforms[]    = {.name = "myplat.0" 
};static struct snd_soc_dai_link my_card_dai_link[] = {{.name       = "my-codec",.stream_name    = "MY-CODEC",.cpus           = mycodec_cpus,.num_cpus       = ARRAY_SIZE(mycodec_cpus),.codecs         = mycodec_codecs,.num_codecs     = ARRAY_SIZE(mycodec_codecs),.platforms      = mycodec_platforms,.num_platforms  = ARRAY_SIZE(mycodec_platforms),.init       = my_card_init,.ops        = &my_card_ops,},
};

其它说明
Linux源码中也另外提供了三种DAI_Link的定义方式,下面直接分析其内容的含义,先看Linux官方的说明:

//include/sound/soc.h
/** Sample 1 : Single CPU/Codec/Platform** SND_SOC_DAILINK_DEFS(test,*  DAILINK_COMP_ARRAY(COMP_CPU("cpu_dai")),*  DAILINK_COMP_ARRAY(COMP_CODEC("codec", "codec_dai")),*  DAILINK_COMP_ARRAY(COMP_PLATFORM("platform")));** struct snd_soc_dai_link link = {*  ...*  SND_SOC_DAILINK_REG(test),* };** Sample 2 : Multi CPU/Codec, no Platform** SND_SOC_DAILINK_DEFS(test,*  DAILINK_COMP_ARRAY(COMP_CPU("cpu_dai1"),*             COMP_CPU("cpu_dai2")),*  DAILINK_COMP_ARRAY(COMP_CODEC("codec1", "codec_dai1"),*             COMP_CODEC("codec2", "codec_dai2")));** struct snd_soc_dai_link link = {*  ...*  SND_SOC_DAILINK_REG(test),* };** Sample 3 : Define each CPU/Codec/Platform manually** SND_SOC_DAILINK_DEF(test_cpu,*      DAILINK_COMP_ARRAY(COMP_CPU("cpu_dai1"),*                 COMP_CPU("cpu_dai2")));* SND_SOC_DAILINK_DEF(test_codec,*      DAILINK_COMP_ARRAY(COMP_CODEC("codec1", "codec_dai1"),*                 COMP_CODEC("codec2", "codec_dai2")));* SND_SOC_DAILINK_DEF(test_platform,*      DAILINK_COMP_ARRAY(COMP_PLATFORM("platform")));** struct snd_soc_dai_link link = {*  ...*  SND_SOC_DAILINK_REG(test_cpu,*              test_codec,*              test_platform),* };** Sample 4 : Sample3 without platform** struct snd_soc_dai_link link = {*  ...*  SND_SOC_DAILINK_REG(test_cpu,*              test_codec);* };*/

这段注释提供了几个示例来说明如何使用SND_SOC_DAILINK_DEFS和SND_SOC_DAILINK_REG宏来定义和注册SoC音频dailink。一个dailink通常包含一个CPU(DMA引擎),一个或多个编解码器,以及一个平台(音频控制器硬件)。

下面是每个示例的解释:

  • 示例 1:单个CPU/Codec/Platform
SND_SOC_DAILINK_DEFS(test,DAILINK_COMP_ARRAY(COMP_CPU("cpu_dai")),DAILINK_COMP_ARRAY(COMP_CODEC("codec", "codec_dai")),DAILINK_COMP_ARRAY(COMP_PLATFORM("platform")));

这个示例展示了如何定义一个包含单个CPU、Codec和Platform的dailink。SND_SOC_DAILINK_DEFS宏用于创建三个数组:test_cpus、test_codecs和test_platforms,每个数组包含一个组件。

struct snd_soc_dai_link link = {...SND_SOC_DAILINK_REG(test),
};

然后,SND_SOC_DAILINK_REG宏用于在snd_soc_dai_link结构体中注册这些组件。

  • 示例 2:多个CPU/Codec,没有Platform
SND_SOC_DAILINK_DEFS(test,DAILINK_COMP_ARRAY(COMP_CPU("cpu_dai1"),COMP_CPU("cpu_dai2")),DAILINK_COMP_ARRAY(COMP_CODEC("codec1", "codec_dai1"),COMP_CODEC("codec2", "codec_dai2")));

这个示例展示了如何定义一个包含多个CPU和Codec,但没有Platform的dailink。SND_SOC_DAILINK_DEFS宏创建了两个数组:test_cpus和test_codecs,每个数组包含两个组件。

struct snd_soc_dai_link link = {...SND_SOC_DAILINK_REG(test),
};

SND_SOC_DAILINK_REG宏在这里假定Platform是空的,并在snd_soc_dai_link结构体中注册CPU和Codec组件。

  • 示例 3:手动定义每个CPU/Codec/Platform
SND_SOC_DAILINK_DEF(test_cpu,DAILINK_COMP_ARRAY(COMP_CPU("cpu_dai1"),COMP_CPU("cpu_dai2")));
SND_SOC_DAILINK_DEF(test_codec,DAILINK_COMP_ARRAY(COMP_CODEC("codec1", "codec_dai1"),COMP_CODEC("codec2", "codec_dai2")));
SND_SOC_DAILINK_DEF(test_platform,DAILINK_COMP_ARRAY(COMP_PLATFORM("platform")));

这个示例展示了如何手动定义每个CPU、Codec和Platform组件。SND_SOC_DAILINK_DEF宏用于创建三个独立的数组。

struct snd_soc_dai_link link = {...SND_SOC_DAILINK_REG(test_cpu,test_codec,test_platform),
};

然后,SND_SOC_DAILINK_REG宏用于在snd_soc_dai_link结构体中注册这些组件。

  • 示例 4:没有Platform的示例3
struct snd_soc_dai_link link = {...SND_SOC_DAILINK_REG(test_cpu,test_codec);
};

这个示例与示例3类似,但它省略了Platform组件。SND_SOC_DAILINK_REG宏在这里只注册CPU和Codec组件。

这些示例展示了如何灵活地使用宏来定义和注册不同配置的dailinks,这对于SoC音频驱动的开发非常重要。

这篇关于【ASOC全解析(三)】machine原理和实战的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/637733

相关文章

Spring Boot + MyBatis Plus 高效开发实战从入门到进阶优化(推荐)

《SpringBoot+MyBatisPlus高效开发实战从入门到进阶优化(推荐)》本文将详细介绍SpringBoot+MyBatisPlus的完整开发流程,并深入剖析分页查询、批量操作、动... 目录Spring Boot + MyBATis Plus 高效开发实战:从入门到进阶优化1. MyBatis

SpringCloud动态配置注解@RefreshScope与@Component的深度解析

《SpringCloud动态配置注解@RefreshScope与@Component的深度解析》在现代微服务架构中,动态配置管理是一个关键需求,本文将为大家介绍SpringCloud中相关的注解@Re... 目录引言1. @RefreshScope 的作用与原理1.1 什么是 @RefreshScope1.

Java并发编程必备之Synchronized关键字深入解析

《Java并发编程必备之Synchronized关键字深入解析》本文我们深入探索了Java中的Synchronized关键字,包括其互斥性和可重入性的特性,文章详细介绍了Synchronized的三种... 目录一、前言二、Synchronized关键字2.1 Synchronized的特性1. 互斥2.

MyBatis 动态 SQL 优化之标签的实战与技巧(常见用法)

《MyBatis动态SQL优化之标签的实战与技巧(常见用法)》本文通过详细的示例和实际应用场景,介绍了如何有效利用这些标签来优化MyBatis配置,提升开发效率,确保SQL的高效执行和安全性,感... 目录动态SQL详解一、动态SQL的核心概念1.1 什么是动态SQL?1.2 动态SQL的优点1.3 动态S

Pandas使用SQLite3实战

《Pandas使用SQLite3实战》本文主要介绍了Pandas使用SQLite3实战,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学... 目录1 环境准备2 从 SQLite3VlfrWQzgt 读取数据到 DataFrame基础用法:读

Python中随机休眠技术原理与应用详解

《Python中随机休眠技术原理与应用详解》在编程中,让程序暂停执行特定时间是常见需求,当需要引入不确定性时,随机休眠就成为关键技巧,下面我们就来看看Python中随机休眠技术的具体实现与应用吧... 目录引言一、实现原理与基础方法1.1 核心函数解析1.2 基础实现模板1.3 整数版实现二、典型应用场景2

Java的IO模型、Netty原理解析

《Java的IO模型、Netty原理解析》Java的I/O是以流的方式进行数据输入输出的,Java的类库涉及很多领域的IO内容:标准的输入输出,文件的操作、网络上的数据传输流、字符串流、对象流等,这篇... 目录1.什么是IO2.同步与异步、阻塞与非阻塞3.三种IO模型BIO(blocking I/O)NI

Python 中的异步与同步深度解析(实践记录)

《Python中的异步与同步深度解析(实践记录)》在Python编程世界里,异步和同步的概念是理解程序执行流程和性能优化的关键,这篇文章将带你深入了解它们的差异,以及阻塞和非阻塞的特性,同时通过实际... 目录python中的异步与同步:深度解析与实践异步与同步的定义异步同步阻塞与非阻塞的概念阻塞非阻塞同步

Python实战之屏幕录制功能的实现

《Python实战之屏幕录制功能的实现》屏幕录制,即屏幕捕获,是指将计算机屏幕上的活动记录下来,生成视频文件,本文主要为大家介绍了如何使用Python实现这一功能,希望对大家有所帮助... 目录屏幕录制原理图像捕获音频捕获编码压缩输出保存完整的屏幕录制工具高级功能实时预览增加水印多平台支持屏幕录制原理屏幕

Redis中高并发读写性能的深度解析与优化

《Redis中高并发读写性能的深度解析与优化》Redis作为一款高性能的内存数据库,广泛应用于缓存、消息队列、实时统计等场景,本文将深入探讨Redis的读写并发能力,感兴趣的小伙伴可以了解下... 目录引言一、Redis 并发能力概述1.1 Redis 的读写性能1.2 影响 Redis 并发能力的因素二、