解读SSD中的Default box(Prior Box)

2024-01-23 22:08
文章标签 解读 default box ssd prior

本文主要是介绍解读SSD中的Default box(Prior Box),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

解读SSD中的Default box(Prior Box)

1:SSD更具体的框架如下: 

这里写图片描述

2: Prior Box

缩进在SSD中引入了Prior Box,实际上与anchor非常类似,就是一些目标的预选框,后续通过softmax分类+bounding box regression获得真实目标的位置。SSD按照如下规则生成prior box:

 

  • 以feature map上每个点的中点为中心(offset=0.5),生成一些列同心的prior box(然后中心点的坐标会乘以step,相当于从feature map位置映射回原图位置)
  • 正方形prior box最小边长为,最大边长为:
  • 每在prototxt设置一个aspect ratio,会生成2个长方形,长宽为: 和 

 

图4 prior box

 

  • 而每个feature map对应prior box的min_size和max_size由以下公式决定,公式中m是使用feature map的数量(SSD 300中m=6):

 

第一层feature map对应的min_size=S1,max_size=S2;第二层min_size=S2,max_size=S3;其他类推。在原文中,Smin=0.2,Smax=0.9,但是在SSD 300中prior box设置并不能和paper中上述公式对应:

 min_sizemax_size
conv4_3

30

60

fc7

60

111

conv6_2

111

162

conv7_2

162

213

conv8_2

213

264

conv9_2 

264

315

不过依然可以看出,SSD使用低层feature map检测小目标,使用高层feature map检测大目标,这也应该是SSD的突出贡献了。其中SSD 300在conv4_3生成prior box的conv4_3_norm_priorbox层prototxt定义如下:

 

  1. layer {  
  2.   name: "conv4_3_norm_mbox_priorbox"  
  3.   type: "PriorBox"  
  4.   bottom: "conv4_3_norm"  
  5.   bottom: "data"  
  6.   top: "conv4_3_norm_mbox_priorbox"  
  7.   prior_box_param {  
  8.     min_size: 30.0  
  9.     max_size: 60.0  
  10.     aspect_ratio: 2  
  11.     flip: true  
  12.     clip: false  
  13.     variance: 0.1  
  14.     variance: 0.1  
  15.     variance: 0.2  
  16.     variance: 0.2  
  17.     step: 8  
  18.     offset: 0.5  
  19.   }  
  20. }  

知道了priorbox如何产生,接下来分析prior box如何使用。这里以conv4_3为例进行分析。

图5

从图5可以看到,在conv4_3 feature map网络pipeline分为了3条线路:

 

  • 经过一次batch norm+一次卷积后,生成了[1, num_class*num_priorbox, layer_height, layer_width]大小的feature用于softmax分类目标和非目标(其中num_class是目标类别,SSD 300中num_class = 21)
  • 经过一次batch norm+一次卷积后,生成了[1, 4*num_priorbox, layer_height, layer_width]大小的feature用于bounding box regression(即每个点一组[dxmin,dymin,dxmax,dymax],参考Faster RCNN 2.5节)
  • 生成了[1, 2, 4*num_priorbox]大小的prior box blob,其中2个channel分别存储prior box的4个点坐标和对应的4个variance

缩进后续通过softmax分类+bounding box regression即可从priox box中预测到目标,熟悉Faster RCNN的读者应该对上述过程应该并不陌生。其实pribox box的与Faster RCNN中的anchor非常类似,都是目标的预设框,没有本质的差异。区别是每个位置的prior box一般是4~6个,少于Faster RCNN默认的9个anchor;同时prior box是设置在不同尺度的feature maps上的,而且大小不同。

缩进还有一个细节就是上面prototxt中的4个variance,这实际上是一种bounding regression中的权重。在图4线路(2)中,网络输出[dxmin,dymin,dxmax,dymax],即对应下面代码中bbox;然后利用如下方法进行针对prior box的位置回归:

 

  1. decode_bbox->set_xmin(  
  2.     prior_bbox.xmin() + prior_variance[0] * bbox.xmin() * prior_width);  
  3. decode_bbox->set_ymin(  
  4.     prior_bbox.ymin() + prior_variance[1] * bbox.ymin() * prior_height);  
  5. decode_bbox->set_xmax(  
  6.     prior_bbox.xmax() + prior_variance[2] * bbox.xmax() * prior_width);  
  7. decode_bbox->set_ymax(  
  8.     prior_bbox.ymax() + prior_variance[3] * bbox.ymax() * prior_height);  

上述代码可以在SSD box_utils.cpp的void DecodeBBox()函数见到

这篇关于解读SSD中的Default box(Prior Box)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/637677

相关文章

MCU7.keil中build产生的hex文件解读

1.hex文件大致解读 闲来无事,查看了MCU6.用keil新建项目的hex文件 用FlexHex打开 给我的第一印象是:经过软件的解释之后,发现这些数据排列地十分整齐 :02000F0080FE71:03000000020003F8:0C000300787FE4F6D8FD75810702000F3D:00000001FF 把解释后的数据当作十六进制来观察 1.每一行数据

Java ArrayList扩容机制 (源码解读)

结论:初始长度为10,若所需长度小于1.5倍原长度,则按照1.5倍扩容。若不够用则按照所需长度扩容。 一. 明确类内部重要变量含义         1:数组默认长度         2:这是一个共享的空数组实例,用于明确创建长度为0时的ArrayList ,比如通过 new ArrayList<>(0),ArrayList 内部的数组 elementData 会指向这个 EMPTY_EL

Spring 源码解读:自定义实现Bean定义的注册与解析

引言 在Spring框架中,Bean的注册与解析是整个依赖注入流程的核心步骤。通过Bean定义,Spring容器知道如何创建、配置和管理每个Bean实例。本篇文章将通过实现一个简化版的Bean定义注册与解析机制,帮助你理解Spring框架背后的设计逻辑。我们还将对比Spring中的BeanDefinition和BeanDefinitionRegistry,以全面掌握Bean注册和解析的核心原理。

GPT系列之:GPT-1,GPT-2,GPT-3详细解读

一、GPT1 论文:Improving Language Understanding by Generative Pre-Training 链接:https://cdn.openai.com/research-covers/languageunsupervised/language_understanding_paper.pdf 启发点:生成loss和微调loss同时作用,让下游任务来适应预训

论文翻译:ICLR-2024 PROVING TEST SET CONTAMINATION IN BLACK BOX LANGUAGE MODELS

PROVING TEST SET CONTAMINATION IN BLACK BOX LANGUAGE MODELS https://openreview.net/forum?id=KS8mIvetg2 验证测试集污染在黑盒语言模型中 文章目录 验证测试集污染在黑盒语言模型中摘要1 引言 摘要 大型语言模型是在大量互联网数据上训练的,这引发了人们的担忧和猜测,即它们可能已

LLM系列 | 38:解读阿里开源语音多模态模型Qwen2-Audio

引言 模型概述 模型架构 训练方法 性能评估 实战演示 总结 引言 金山挂月窥禅径,沙鸟听经恋法门。 小伙伴们好,我是微信公众号《小窗幽记机器学习》的小编:卖铁观音的小男孩,今天这篇小作文主要是介绍阿里巴巴的语音多模态大模型Qwen2-Audio。近日,阿里巴巴Qwen团队发布了最新的大规模音频-语言模型Qwen2-Audio及其技术报告。该模型在音频理解和多模态交互

文章解读与仿真程序复现思路——电力自动化设备EI\CSCD\北大核心《考虑燃料电池和电解槽虚拟惯量支撑的电力系统优化调度方法》

本专栏栏目提供文章与程序复现思路,具体已有的论文与论文源程序可翻阅本博主免费的专栏栏目《论文与完整程序》 论文与完整源程序_电网论文源程序的博客-CSDN博客https://blog.csdn.net/liang674027206/category_12531414.html 电网论文源程序-CSDN博客电网论文源程序擅长文章解读,论文与完整源程序,等方面的知识,电网论文源程序关注python

速通GPT-3:Language Models are Few-Shot Learners全文解读

文章目录 论文实验总览1. 任务设置与测试策略2. 任务类别3. 关键实验结果4. 数据污染与实验局限性5. 总结与贡献 Abstract1. 概括2. 具体分析3. 摘要全文翻译4. 为什么不需要梯度更新或微调⭐ Introduction1. 概括2. 具体分析3. 进一步分析 Approach1. 概括2. 具体分析3. 进一步分析 Results1. 概括2. 具体分析2.1 语言模型

MongoDB学习—(1)安装时出现The default storage engine 'wiredTiger' is not available问题解决

MongoDB是NoSql类型的一种基于分布式文件存储的数据库,其存储方式与关系型数据库不同。其详细解释可见于[百科]。安装文件可从官网下载,官网:http://mongodb.org 我将下载的解压文件放到D盘的mongodb文件夹下,

Open-Sora代码详细解读(1):解读DiT结构

Diffusion Models专栏文章汇总:入门与实战 前言:目前开源的DiT视频生成模型不是很多,Open-Sora是开发者生态最好的一个,涵盖了DiT、时空DiT、3D VAE、Rectified Flow、因果卷积等Diffusion视频生成的经典知识点。本篇博客从Open-Sora的代码出发,深入解读背后的原理。 目录 DiT相比于Unet的关键改进点 Token化方