非线性最小二乘问题的数值方法 —— 狗腿法 Powell‘s Dog Leg Method (II, Python 简单实例)

本文主要是介绍非线性最小二乘问题的数值方法 —— 狗腿法 Powell‘s Dog Leg Method (II, Python 简单实例),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Title: 非线性最小二乘问题的数值方法 —— 狗腿法 Powell‘s Dog Leg Method (II, Python 简单实例)


姊妹博文

非线性最小二乘问题的数值方法 —— 狗腿法 Powell‘s Dog Leg Method (I - 原理与算法)


0.前言

本篇博文作为对前述 “非线性最小二乘问题的数值方法 —— 狗腿法 Powell‘s Dog Leg Method (I - 原理与算法)” 的简单实践扩展.

理论部分参见前述博文, 此处不再重复. 这里只是补充一个简单的 Python 实例.


1. 最优问题实例

m i n i m i z e g ( x ) = 1 2 ∥ r ( x ) ∥ 2 2 = 1 2 ∑ i = 1 3 r i ( x ) 2 (I-1) {\rm minimize}\quad {g}(\mathbf{x}) = \frac{1}{2}\|\mathbf{r}(\mathbf{x})\|_2^2 = \frac{1}{2}\sum_{i=1}^{3} r_i(\mathbf{x})^2 \tag{I-1} minimizeg(x)=21r(x)22=21i=13ri(x)2(I-1)

其中

x = [ x 1 , x 2 ] T \mathbf{x} = \begin{bmatrix} x_1, x_2 \end{bmatrix}^{\small\rm T} x=[x1,x2]T

r ( x ) = [ r 1 ( x ) , r 2 ( x ) , r 3 ( x ) ] T \mathbf{r}(\mathbf{x}) = \begin{bmatrix} r_1(\mathbf{x}), \, r_2(\mathbf{x}) ,\,r_3(\mathbf{x}) \end{bmatrix}^{\small\rm T} r(x)=[r1(x),r2(x),r3(x)]T

r 1 ( x ) = sin ⁡ x 1 − 0.4 r_1(\mathbf{x}) = \sin x_1 -0.4 r1(x)=sinx10.4

r 2 ( x ) = cos ⁡ x 2 + 0.8 r_2(\mathbf{x}) = \cos x_2 + 0.8 r2(x)=cosx2+0.8

r 3 ( x ) = x 1 2 + x 2 2 − 1 r_3(\mathbf{x}) = \sqrt{x_1^2 +x_2^2} -1 r3(x)=x12+x22 1

可以推得

∂ r ( x ) ∂ x = [ cos ⁡ x 1 0 0 − sin ⁡ x 2 x 1 x 1 2 + x 2 2 x 2 x 1 2 + x 2 2 ] \frac{\partial \mathbf{r}(\mathbf{x})}{\partial \mathbf{x}} = \begin{bmatrix}\cos x_1 & 0\\ 0 &-\sin x_2 \\ \frac{x_1}{\sqrt{x_1^2+x_2^2}} & \frac{x_2}{\sqrt{x_1^2+x_2^2}} \end{bmatrix} xr(x)= cosx10x12+x22 x10sinx2x12+x22 x2

g ( x ) = 1 2 [ ( sin ⁡ x 1 − 0.4 ) 2 + ( cos ⁡ x 2 + 0.8 ) 2 + ( x 2 2 + x 1 2 − 1 ) 2 ] g(\mathbf{x})=\frac{1}{2} \left[{ {{\left( \sin{ {x_1} }-0.4\right) }^{2}}+{{\left( \cos{ {x_2} }+0.8\right) }^{2}}+{{\left( \sqrt{{{{x_2}}^{2}}+{{{x_1}}^{2}}}-1\right) }^{2}}}\right] g(x)=21[(sinx10.4)2+(cosx2+0.8)2+(x22+x12 1)2]

∇ g ( x ) = [ x 1 ( x 2 2 + x 1 2 − 1 ) x 2 2 + x 1 2 + cos ⁡ x 1 ( sin ⁡ x 1 − 0.4 ) x 2 ( x 2 2 + x 1 2 − 1 ) x 2 2 + x 1 2 − sin ⁡ x 2 ( cos ⁡ x 2 + 0.8 ) ] \nabla g(\mathbf{x}) = \begin{bmatrix}\frac{{x_1} \left( \sqrt{{{{x_2}}^{2}}+{{{x_1}}^{2}}}-1\right) }{\sqrt{{{{x_2}}^{2}}+{{{x_1}}^{2}}}}+\cos{ {x_1} } \left( \sin{ {x_1} }-0.4\right) \\ \frac{{x_2} \left( \sqrt{{{{x_2}}^{2}}+{{{x_1}}^{2}}}-1\right) }{\sqrt{{{{x_2}}^{2}}+{{{x_1}}^{2}}}}- \sin{ {x_2} } \left( \cos{ {x_2} }+0.8\right) \end{bmatrix} g(x)= x22+x12 x1(x22+x12 1)+cosx1(sinx10.4)x22+x12 x2(x22+x12 1)sinx2(cosx2+0.8)

H ~ ( x ) = [ x 1 2 x 2 2 + x 1 2 + ( cos ⁡ x 1 ) 2 x 1 x 2 x 2 2 + x 1 2 x 1 x 2 x 2 2 + x 1 2 ( sin ⁡ x 2 ) 2 + x 2 2 x 2 2 + x 1 2 ] \widetilde{\mathbf{H}}(\mathbf{x})=\begin{bmatrix}\frac{{{{x_1}}^{2}}}{{{{x_2}}^{2}}+{{{x_1}}^{2}}}+{{(\cos{ {x_1} })}^{2}} & \frac{{x_1} {x_2}}{{{{x_2}}^{2}}+{{{x_1}}^{2}}}\\ \frac{{x_1} {x_2}}{{{{x_2}}^{2}}+{{{x_1}}^{2}}} & {{(\sin{ {x_2} )}}^{2}}+\frac{{{{x_2}}^{2}}}{{{{x_2}}^{2}}+{{{x_1}}^{2}}}\end{bmatrix} H (x)=[x22+x12x12+(cosx1)2x22+x12x1x2x22+x12x1x2(sinx2)2+x22+x12x22]

具体的符号推导参见非线性最小二乘问题的数值方法 —— 从牛顿迭代法到高斯-牛顿法 (实例篇 V).


2. 狗腿法 (Powell‘s Dog Leg Method) Python 实现

基于狗腿法的算法流程实现如下简单 Python Demo:

from mpl_toolkits.mplot3d import axes3d
import matplotlib.pyplot as plt
import numpy as np
from numpy.linalg import inv, det, norm
from math import cos
from math import sin
from math import sqrt
from math import pow# multiplication of two matrixs
def multiply_matrix(A, B):if  A.shape[1] == B.shape[0]:C = np.zeros((A.shape[0], B.shape[1]), dtype = float)[rows, cols] = C.shapefor row in range(rows): for col in range(cols):for elt in range(len(B)):C[row, col] += A[row, elt] * B[elt, col]return Celse:return "Cannot multiply A and B. Please check whether the dimensions of the inputs are compatible."# g(x) = (1/2) ||r(x)||_2^2
def g(x_vector):x_1 = x_vector[0]x_2 = x_vector[1]return ( pow(sin(x_1)-0.4, 2)+ pow(cos(x_2)+0.8, 2) + pow(sqrt(pow(x_2,2)+pow(x_1,2))-1, 2) ) /2# r(x) = [r_1, r_2, r_3]^{T}
def r(x_vector):x_1 = x_vector[0]x_2 = x_vector[1]return np.array([[sin(x_1)-0.4],[cos(x_2)+0.8],[sqrt(pow(x_1,2)+pow(x_2,2))-1]], dtype=object)# \partial r(x) / \partial x
def dr(x_vector):x_1 = x_vector[0]x_2 = x_vector[1]if sqrt(pow(x_2,2)+pow(x_1,2)) < 1e-3:  ## 人为设置return np.array([[cos(x_1),	0], [0, -sin(x_2)],[0, 0]], dtype=object)else:return np.array([[cos(x_1),	0],[0,	-sin(x_2)],[x_1/sqrt(pow(x_2,2)+pow(x_1,2)), x_2/sqrt(pow(x_2,2)+pow(x_1,2))]], dtype=object)# Simplified Hessian matrix in Gauss-Newton method
# refer to eq. ​(I-1-2) in blog "非线性最小二乘问题的数值方法 —— 从高斯-牛顿法到列文伯格-马夸尔特法 (I)"
def sH(x_vector):x_1 = x_vector[0]x_2 = x_vector[1]return multiply_matrix(np.transpose(dr(x_1, x_2)), dr(x_1, x_2)) # \nabla g(x_1, x_2)
# refer to eq. ​(I-1-3) in blog "非线性最小二乘问题的数值方法 —— 从高斯-牛顿法到列文伯格-马夸尔特法 (I)"
def dg(x_vector):x_1 = x_vector[0]x_2 = x_vector[1]return np.array(multiply_matrix(np.transpose(dr(x_1, x_2)), r(x_1, x_2)))# model for the cost function g based on eq (II-2-2) in "非线性最小二乘问题的数值方法 —— 狗腿法 Powell‘s Dog Leg Method (I - 原理与算法)"
def L_model(h_vector, g_i, dg_i, sH_i):return g_i + multiply_matrix( dg_i.transpose(), h_vector) + 0.5 * multiply_matrix(multiply_matrix(h_vector.transpose(), sH_i), h_vector)def dog_leg_method(x_vector, epsilon_1, epsilon_2, epsilon_3, max_iter, trust_region_radius):# x_1 = x_vector[1]# # x_2 = x_vector[2]iter = 0delta = trust_region_radius   # trust-region radiusfound = False# g_i = g(x_vector)x_current_vector = x_vectorr_i = r(x_current_vector)dr_i = dr(x_current_vector)dg_i = multiply_matrix(np.transpose(dr_i), r_i)g_i = g(x_current_vector)# if np.max(np.abs(dg_i)) < epsilon_1:if (norm(r_i, np.inf) < epsilon_3 ) or (norm(dg_i, np.inf) < epsilon_1):found = Truearray_x_1 = []array_x_2 = []array_x_3 = []# x_new_vector = np.array([0,0])# g_new = np.infwhile (found == False) and (iter < max_iter):# sH_i = sH(x_vector)array_x_1.append(x_current_vector[0])array_x_2.append(x_current_vector[1])array_x_3.append(g_i)iter += 1step_sd_i = - dg_i Jh = multiply_matrix(dr_i, step_sd_i)alpha_i = pow(norm(step_sd_i, 2), 2) / pow(norm(Jh, 2), 2)step_cp_i = alpha_i * step_sd_i                     ## Steepest descent stepsH_i = multiply_matrix(np.transpose(dr_i), dr_i)    ## Simplified Hessian Matrixinv_sH_i =  inv(sH_i)step_gn_i = - np.array(multiply_matrix(inv_sH_i, dg_i))       ## Gauss-Newton steprho = -1while (rho < 0) and (found == False):               ## Until step acceptableif norm(step_gn_i, 2) < delta:                  ## Case Istep_dl_i = step_gn_iprint("Iterating index [%d], Case I"%iter)elif norm(step_cp_i, 2) >= delta:               ## Case II step_dl_i = (delta / norm(step_sd_i, 2)) * step_sd_iprint("Iterating index [%d], Case II"%iter)else:                                           ## Case IIIstep_gn_cp_i = step_gn_i - step_cp_ign_cp_norm_sq = pow(norm(step_gn_cp_i, 2),2)delta_cp_sq = pow(delta,2) - pow(norm(step_cp_i, 2), 2)c_matrix = multiply_matrix( np.transpose(step_cp_i), step_gn_cp_i )c = c_matrix[0][0]sqrt_discriminant = sqrt( pow(c,2) + gn_cp_norm_sq * delta_cp_sq ) if (c <= 0):beta = (-c + sqrt_discriminant) / gn_cp_norm_sqelse:beta = delta_cp_sq / (c + sqrt_discriminant)step_dl_i = step_cp_i + beta * step_gn_cp_iprint("Iterating index [%d], Case III"%iter)norm_step_dl = norm(step_dl_i, 2)if (norm_step_dl <= epsilon_2 * (norm(x_current_vector, 2) + epsilon_2)):found = Trueelse:# print(x_current_vector.shape)# print(step_dl_i.shape)x_new_vector = x_current_vector + step_dl_i.flatten()g_new = g(x_new_vector)L_0 = g_iL_h = L_model(step_dl_i, g_i, dg_i, sH_i)rho = (g_i - g_new) / (L_0 - L_h)if (rho > 0):                           ## Step acceptablex_current_vector = x_new_vector     ## New iterating stater_i = r(x_current_vector)dr_i = dr(x_current_vector)dg_i = multiply_matrix(np.transpose(dr_i), r_i)g_i = g(x_current_vector)if (norm(r_i, np.inf) < epsilon_3 ) or (norm(dg_i, np.inf) < epsilon_1):found = Trueif (rho > 0.75):                        ## Expanding trust regionif (delta - 3 * norm_step_dl < 0):delta = 3 * norm_step_dlelif (rho < 0.25):                      ## Shrinking trust regiondelta = delta / 2if (delta < (epsilon_2*(norm(x_current_vector, 2)+epsilon_2))):found = Truereturn array_x_1, array_x_2, array_x_3def result_plot(trajectory, trust_region_radius):fig = plt.figure()ax3 = plt.axes(projection='3d')xx = np.arange(-5,5,0.1)yy = np.arange(-4,4,0.1)X, Y = np.meshgrid(xx, yy)Z = np.zeros((X.shape[0], Y.shape[1]), dtype = float)for i in range(X.shape[0]):for j in range(Y.shape[1]):Z[i,j] = g(np.array([X[0,j], Y[i,0]]))ax3.plot_surface(X, Y, Z, rstride = 1, cstride = 1, cmap='rainbow', alpha=0.25)ax3.contour(X, Y, Z, offset=-1, cmap = 'rainbow')ax3.plot(trajectory[0], trajectory[1], trajectory[2], "r--")offset_data = -1*np.ones(len(trajectory[0]))ax3.plot(trajectory[0], trajectory[1], offset_data,'k--')ax3.set_title('Dog Leg Method \n(Initial point [%.1f, %.1f], Trust-region radius %.2f)' %(trajectory[0][0], trajectory[1][0], trust_region_radius))ax3.set_xlabel("r_1")ax3.set_ylabel("r_2")ax3.set_zlabel("g")file_name_prefix = "./dog_leg"file_extension = ".png"radius= "-r"file_name = f"{file_name_prefix}_{trajectory[0][0]}_{trajectory[1][0]}{radius}{trust_region_radius}{file_extension}"print(file_name)plt.draw()plt.savefig(file_name)if __name__ == "__main__":test_data = np.array([[4.9, 3.9], [-2.9, 1.9], [0.1, -0.1], [-0.1, 0.1], [0,-3.8],[1,2.5]], dtype=object)trust_region_radius = np.array([0.4, 0.01, 2.0])for radius in trust_region_radius:for inital_data in test_data:print("\nInitial point: [%.1f, %.1f]" %(inital_data[0],inital_data[1]))print("Trust region radius: %.2f" %radius)epsilon_1 = 1e-6epsilon_2 = 1e-6epsilon_3 = 1e-6max_iter = 1000trajectory = dog_leg_method(inital_data, epsilon_1, epsilon_2, epsilon_3, max_iter, radius)result_plot(trajectory, radius)

3. 测试结果

A. 结果显示

测试显示 (初始点 [4.9, 3.9], 信赖域半径分别为 0.01、0.4、2.0)测试显示 (初始点 [-2.9, 1.9], 信赖域半径分别为 0.01、0.4、2.0)
Levenberg_Marquardt_4.9_3.9Levenberg_Marquardt_4.9_3.9
Levenberg_Marquardt_0.1_-0.1Levenberg_Marquardt_-0.1_0.1
Levenberg_Marquardt_0_-3.8Levenberg_Marquardt_1_2.5

B. 迭代步说明

不同信赖域的迭代步及每一步的类型如下表所示. Case III 代表该步类型为狗腿步, Case II 代表该步类型为柯西步, Case I 代表该步类型为高斯-牛顿步.

越靠近收敛极小值点, 高斯-牛顿步类型出现频率越高, 这样有利于快速收敛.

信赖域半径对计算性能也有影响.

Trust-region radius = 0.01Trust-region radius = 0.4Trust-region radius = 2.0
Initial point: [4.9, 3.9]
Trust region radius: 0.01
Iterating index [1], Case II
Iterating index [2], Case II
Iterating index [3], Case II
Iterating index [4], Case II
Iterating index [5], Case II
Iterating index [6], Case II
Iterating index [7], Case I
Iterating index [8], Case I
Iterating index [9], Case I
Iterating index [10], Case I
Iterating index [11], Case I
Iterating index [12], Case I
Iterating index [13], Case I
Iterating index [14], Case I
Iterating index [15], Case I
Iterating index [16], Case I
Iterating index [17], Case I
Iterating index [18], Case I
Iterating index [19], Case I
Iterating index [20], Case I
Iterating index [21], Case I
Iterating index [22], Case I
Iterating index [23], Case I
Iterating index [24], Case I
Iterating index [25], Case I
Initial point: [4.9, 3.9]
Trust region radius: 0.40
Iterating index [1], Case II
Iterating index [2], Case II
Iterating index [3], Case III
Iterating index [4], Case III
Iterating index [4], Case III
Iterating index [5], Case I
Iterating index [5], Case I
Iterating index [5], Case III
Iterating index [6], Case II
Iterating index [7], Case I
Iterating index [8], Case I
Iterating index [9], Case I
Iterating index [10], Case I
Iterating index [11], Case I
Iterating index [12], Case I
Iterating index [13], Case I
Iterating index [14], Case I
Iterating index [15], Case I
Iterating index [16], Case I
Iterating index [17], Case I
Iterating index [18], Case I
Iterating index [19], Case I
Iterating index [20], Case I
Iterating index [21], Case I
Iterating index [22], Case I
Iterating index [23], Case I
Initial point: [4.9, 3.9]
Trust region radius: 2.00
Iterating index [1], Case II
Iterating index [2], Case I
Iterating index [3], Case I
Iterating index [3], Case I
Iterating index [3], Case III
Iterating index [4], Case I
Iterating index [5], Case I
Iterating index [6], Case I
Iterating index [7], Case I
Iterating index [8], Case I
Iterating index [9], Case I
Iterating index [10], Case I
Iterating index [11], Case I
Iterating index [12], Case I
Iterating index [13], Case I
Iterating index [14], Case I
Iterating index [15], Case I
Iterating index [16], Case I
Iterating index [17], Case I
Iterating index [18], Case I
Iterating index [19], Case I
Iterating index [20], Case I
Iterating index [21], Case I
Iterating index [22], Case I
Initial point: [-2.9, 1.9]
Trust region radius: 0.01
Iterating index [1], Case II
Iterating index [2], Case II
Iterating index [3], Case II
Iterating index [4], Case II
Iterating index [5], Case I
Iterating index [6], Case I
Iterating index [7], Case I
Iterating index [8], Case III
Iterating index [8], Case III
Iterating index [9], Case I
Iterating index [10], Case I
Iterating index [11], Case I
Iterating index [12], Case I
Iterating index [13], Case I
Iterating index [14], Case I
Iterating index [15], Case I
Iterating index [16], Case I
Iterating index [17], Case I
Iterating index [18], Case I
Iterating index [19], Case I
Iterating index [20], Case I
Iterating index [21], Case I
Iterating index [22], Case I
Iterating index [23], Case I
Iterating index [24], Case I
Iterating index [25], Case I
Iterating index [26], Case I
Initial point: [-2.9, 1.9]
Trust region radius: 0.40
Iterating index [1], Case II
Iterating index [2], Case I
Iterating index [3], Case I
Iterating index [4], Case I
Iterating index [5], Case III
Iterating index [5], Case III
Iterating index [6], Case I
Iterating index [7], Case I
Iterating index [8], Case I
Iterating index [9], Case I
Iterating index [10], Case I
Iterating index [11], Case I
Iterating index [12], Case I
Iterating index [13], Case I
Iterating index [14], Case I
Iterating index [15], Case I
Iterating index [16], Case I
Iterating index [17], Case I
Iterating index [18], Case I
Iterating index [19], Case I
Iterating index [20], Case I
Iterating index [21], Case I
Iterating index [22], Case I
Iterating index [23], Case I
Initial point: [-2.9, 1.9]
Trust region radius: 2.00
Iterating index [1], Case I
Iterating index [2], Case I
Iterating index [3], Case III
Iterating index [4], Case III
Iterating index [4], Case III
Iterating index [5], Case I
Iterating index [6], Case I
Iterating index [7], Case I
Iterating index [8], Case I
Iterating index [9], Case I
Iterating index [10], Case I
Iterating index [11], Case I
Iterating index [12], Case I
Iterating index [13], Case I
Iterating index [14], Case I
Iterating index [15], Case I
Iterating index [16], Case I
Iterating index [17], Case I
Iterating index [18], Case I
Iterating index [19], Case I
Iterating index [20], Case I
Iterating index [21], Case I
Iterating index [22], Case I

4. 结论

以上仅为一个狗腿法的简单示例, 推导和算法请见 “非线性最小二乘问题的数值方法 —— 狗腿法 Powell‘s Dog Leg Method (I - 原理与算法)”.

如有问题请指出, 谢谢!

这篇关于非线性最小二乘问题的数值方法 —— 狗腿法 Powell‘s Dog Leg Method (II, Python 简单实例)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/636559

相关文章

基于Python编写一个git自动上传的脚本(打包成exe)

《基于Python编写一个git自动上传的脚本(打包成exe)》这篇文章主要为大家详细介绍了如何基于Python编写一个git自动上传的脚本并打包成exe,文中的示例代码讲解详细,感兴趣的小伙伴可以跟... 目录前言效果如下源码实现利用pyinstaller打包成exe利用ResourceHacker修改e

Python在二进制文件中进行数据搜索的实战指南

《Python在二进制文件中进行数据搜索的实战指南》在二进制文件中搜索特定数据是编程中常见的任务,尤其在日志分析、程序调试和二进制数据处理中尤为重要,下面我们就来看看如何使用Python实现这一功能吧... 目录简介1. 二进制文件搜索概述2. python二进制模式文件读取(rb)2.1 二进制模式与文本

Python中Tkinter GUI编程详细教程

《Python中TkinterGUI编程详细教程》Tkinter作为Python编程语言中构建GUI的一个重要组件,其教程对于任何希望将Python应用到实际编程中的开发者来说都是宝贵的资源,这篇文... 目录前言1. Tkinter 简介2. 第一个 Tkinter 程序3. 窗口和基础组件3.1 创建窗

Django调用外部Python程序的完整项目实战

《Django调用外部Python程序的完整项目实战》Django是一个强大的PythonWeb框架,它的设计理念简洁优雅,:本文主要介绍Django调用外部Python程序的完整项目实战,文中通... 目录一、为什么 Django 需要调用外部 python 程序二、三种常见的调用方式方式 1:直接 im

Python字符串处理方法超全攻略

《Python字符串处理方法超全攻略》字符串可以看作多个字符的按照先后顺序组合,相当于就是序列结构,意味着可以对它进行遍历、切片,:本文主要介绍Python字符串处理方法的相关资料,文中通过代码介... 目录一、基础知识:字符串的“不可变”特性与创建方式二、常用操作:80%场景的“万能工具箱”三、格式化方法

springboot+redis实现订单过期(超时取消)功能的方法详解

《springboot+redis实现订单过期(超时取消)功能的方法详解》在SpringBoot中使用Redis实现订单过期(超时取消)功能,有多种成熟方案,本文为大家整理了几个详细方法,文中的示例代... 目录一、Redis键过期回调方案(推荐)1. 配置Redis监听器2. 监听键过期事件3. Redi

基于SpringBoot实现分布式锁的三种方法

《基于SpringBoot实现分布式锁的三种方法》这篇文章主要为大家详细介绍了基于SpringBoot实现分布式锁的三种方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、基于Redis原生命令实现分布式锁1. 基础版Redis分布式锁2. 可重入锁实现二、使用Redisso

JAVA Calendar设置上个月时,日期不存在或错误提示问题及解决

《JAVACalendar设置上个月时,日期不存在或错误提示问题及解决》在使用Java的Calendar类设置上个月的日期时,如果遇到不存在的日期(如4月31日),默认会自动调整到下个月的相应日期(... 目录Java Calendar设置上个月时,日期不存在或错误提示java进行日期计算时如果出现不存在的

Mybatis对MySQL if 函数的不支持问题解读

《Mybatis对MySQLif函数的不支持问题解读》接手项目后,为了实现多租户功能,引入了Mybatis-plus,发现之前运行正常的SQL语句报错,原因是Mybatis不支持MySQL的if函... 目录MyBATis对mysql if 函数的不支持问题描述经过查询网上搜索资料找到原因解决方案总结Myb

浅析python如何去掉字符串中最后一个字符

《浅析python如何去掉字符串中最后一个字符》在Python中,字符串是不可变对象,因此无法直接修改原字符串,但可以通过生成新字符串的方式去掉最后一个字符,本文整理了三种高效方法,希望对大家有所帮助... 目录方法1:切片操作(最推荐)方法2:长度计算索引方法3:拼接剩余字符(不推荐,仅作演示)关键注意事