非线性最小二乘问题的数值方法 —— 狗腿法 Powell‘s Dog Leg Method (II, Python 简单实例)

本文主要是介绍非线性最小二乘问题的数值方法 —— 狗腿法 Powell‘s Dog Leg Method (II, Python 简单实例),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Title: 非线性最小二乘问题的数值方法 —— 狗腿法 Powell‘s Dog Leg Method (II, Python 简单实例)


姊妹博文

非线性最小二乘问题的数值方法 —— 狗腿法 Powell‘s Dog Leg Method (I - 原理与算法)


0.前言

本篇博文作为对前述 “非线性最小二乘问题的数值方法 —— 狗腿法 Powell‘s Dog Leg Method (I - 原理与算法)” 的简单实践扩展.

理论部分参见前述博文, 此处不再重复. 这里只是补充一个简单的 Python 实例.


1. 最优问题实例

m i n i m i z e g ( x ) = 1 2 ∥ r ( x ) ∥ 2 2 = 1 2 ∑ i = 1 3 r i ( x ) 2 (I-1) {\rm minimize}\quad {g}(\mathbf{x}) = \frac{1}{2}\|\mathbf{r}(\mathbf{x})\|_2^2 = \frac{1}{2}\sum_{i=1}^{3} r_i(\mathbf{x})^2 \tag{I-1} minimizeg(x)=21r(x)22=21i=13ri(x)2(I-1)

其中

x = [ x 1 , x 2 ] T \mathbf{x} = \begin{bmatrix} x_1, x_2 \end{bmatrix}^{\small\rm T} x=[x1,x2]T

r ( x ) = [ r 1 ( x ) , r 2 ( x ) , r 3 ( x ) ] T \mathbf{r}(\mathbf{x}) = \begin{bmatrix} r_1(\mathbf{x}), \, r_2(\mathbf{x}) ,\,r_3(\mathbf{x}) \end{bmatrix}^{\small\rm T} r(x)=[r1(x),r2(x),r3(x)]T

r 1 ( x ) = sin ⁡ x 1 − 0.4 r_1(\mathbf{x}) = \sin x_1 -0.4 r1(x)=sinx10.4

r 2 ( x ) = cos ⁡ x 2 + 0.8 r_2(\mathbf{x}) = \cos x_2 + 0.8 r2(x)=cosx2+0.8

r 3 ( x ) = x 1 2 + x 2 2 − 1 r_3(\mathbf{x}) = \sqrt{x_1^2 +x_2^2} -1 r3(x)=x12+x22 1

可以推得

∂ r ( x ) ∂ x = [ cos ⁡ x 1 0 0 − sin ⁡ x 2 x 1 x 1 2 + x 2 2 x 2 x 1 2 + x 2 2 ] \frac{\partial \mathbf{r}(\mathbf{x})}{\partial \mathbf{x}} = \begin{bmatrix}\cos x_1 & 0\\ 0 &-\sin x_2 \\ \frac{x_1}{\sqrt{x_1^2+x_2^2}} & \frac{x_2}{\sqrt{x_1^2+x_2^2}} \end{bmatrix} xr(x)= cosx10x12+x22 x10sinx2x12+x22 x2

g ( x ) = 1 2 [ ( sin ⁡ x 1 − 0.4 ) 2 + ( cos ⁡ x 2 + 0.8 ) 2 + ( x 2 2 + x 1 2 − 1 ) 2 ] g(\mathbf{x})=\frac{1}{2} \left[{ {{\left( \sin{ {x_1} }-0.4\right) }^{2}}+{{\left( \cos{ {x_2} }+0.8\right) }^{2}}+{{\left( \sqrt{{{{x_2}}^{2}}+{{{x_1}}^{2}}}-1\right) }^{2}}}\right] g(x)=21[(sinx10.4)2+(cosx2+0.8)2+(x22+x12 1)2]

∇ g ( x ) = [ x 1 ( x 2 2 + x 1 2 − 1 ) x 2 2 + x 1 2 + cos ⁡ x 1 ( sin ⁡ x 1 − 0.4 ) x 2 ( x 2 2 + x 1 2 − 1 ) x 2 2 + x 1 2 − sin ⁡ x 2 ( cos ⁡ x 2 + 0.8 ) ] \nabla g(\mathbf{x}) = \begin{bmatrix}\frac{{x_1} \left( \sqrt{{{{x_2}}^{2}}+{{{x_1}}^{2}}}-1\right) }{\sqrt{{{{x_2}}^{2}}+{{{x_1}}^{2}}}}+\cos{ {x_1} } \left( \sin{ {x_1} }-0.4\right) \\ \frac{{x_2} \left( \sqrt{{{{x_2}}^{2}}+{{{x_1}}^{2}}}-1\right) }{\sqrt{{{{x_2}}^{2}}+{{{x_1}}^{2}}}}- \sin{ {x_2} } \left( \cos{ {x_2} }+0.8\right) \end{bmatrix} g(x)= x22+x12 x1(x22+x12 1)+cosx1(sinx10.4)x22+x12 x2(x22+x12 1)sinx2(cosx2+0.8)

H ~ ( x ) = [ x 1 2 x 2 2 + x 1 2 + ( cos ⁡ x 1 ) 2 x 1 x 2 x 2 2 + x 1 2 x 1 x 2 x 2 2 + x 1 2 ( sin ⁡ x 2 ) 2 + x 2 2 x 2 2 + x 1 2 ] \widetilde{\mathbf{H}}(\mathbf{x})=\begin{bmatrix}\frac{{{{x_1}}^{2}}}{{{{x_2}}^{2}}+{{{x_1}}^{2}}}+{{(\cos{ {x_1} })}^{2}} & \frac{{x_1} {x_2}}{{{{x_2}}^{2}}+{{{x_1}}^{2}}}\\ \frac{{x_1} {x_2}}{{{{x_2}}^{2}}+{{{x_1}}^{2}}} & {{(\sin{ {x_2} )}}^{2}}+\frac{{{{x_2}}^{2}}}{{{{x_2}}^{2}}+{{{x_1}}^{2}}}\end{bmatrix} H (x)=[x22+x12x12+(cosx1)2x22+x12x1x2x22+x12x1x2(sinx2)2+x22+x12x22]

具体的符号推导参见非线性最小二乘问题的数值方法 —— 从牛顿迭代法到高斯-牛顿法 (实例篇 V).


2. 狗腿法 (Powell‘s Dog Leg Method) Python 实现

基于狗腿法的算法流程实现如下简单 Python Demo:

from mpl_toolkits.mplot3d import axes3d
import matplotlib.pyplot as plt
import numpy as np
from numpy.linalg import inv, det, norm
from math import cos
from math import sin
from math import sqrt
from math import pow# multiplication of two matrixs
def multiply_matrix(A, B):if  A.shape[1] == B.shape[0]:C = np.zeros((A.shape[0], B.shape[1]), dtype = float)[rows, cols] = C.shapefor row in range(rows): for col in range(cols):for elt in range(len(B)):C[row, col] += A[row, elt] * B[elt, col]return Celse:return "Cannot multiply A and B. Please check whether the dimensions of the inputs are compatible."# g(x) = (1/2) ||r(x)||_2^2
def g(x_vector):x_1 = x_vector[0]x_2 = x_vector[1]return ( pow(sin(x_1)-0.4, 2)+ pow(cos(x_2)+0.8, 2) + pow(sqrt(pow(x_2,2)+pow(x_1,2))-1, 2) ) /2# r(x) = [r_1, r_2, r_3]^{T}
def r(x_vector):x_1 = x_vector[0]x_2 = x_vector[1]return np.array([[sin(x_1)-0.4],[cos(x_2)+0.8],[sqrt(pow(x_1,2)+pow(x_2,2))-1]], dtype=object)# \partial r(x) / \partial x
def dr(x_vector):x_1 = x_vector[0]x_2 = x_vector[1]if sqrt(pow(x_2,2)+pow(x_1,2)) < 1e-3:  ## 人为设置return np.array([[cos(x_1),	0], [0, -sin(x_2)],[0, 0]], dtype=object)else:return np.array([[cos(x_1),	0],[0,	-sin(x_2)],[x_1/sqrt(pow(x_2,2)+pow(x_1,2)), x_2/sqrt(pow(x_2,2)+pow(x_1,2))]], dtype=object)# Simplified Hessian matrix in Gauss-Newton method
# refer to eq. ​(I-1-2) in blog "非线性最小二乘问题的数值方法 —— 从高斯-牛顿法到列文伯格-马夸尔特法 (I)"
def sH(x_vector):x_1 = x_vector[0]x_2 = x_vector[1]return multiply_matrix(np.transpose(dr(x_1, x_2)), dr(x_1, x_2)) # \nabla g(x_1, x_2)
# refer to eq. ​(I-1-3) in blog "非线性最小二乘问题的数值方法 —— 从高斯-牛顿法到列文伯格-马夸尔特法 (I)"
def dg(x_vector):x_1 = x_vector[0]x_2 = x_vector[1]return np.array(multiply_matrix(np.transpose(dr(x_1, x_2)), r(x_1, x_2)))# model for the cost function g based on eq (II-2-2) in "非线性最小二乘问题的数值方法 —— 狗腿法 Powell‘s Dog Leg Method (I - 原理与算法)"
def L_model(h_vector, g_i, dg_i, sH_i):return g_i + multiply_matrix( dg_i.transpose(), h_vector) + 0.5 * multiply_matrix(multiply_matrix(h_vector.transpose(), sH_i), h_vector)def dog_leg_method(x_vector, epsilon_1, epsilon_2, epsilon_3, max_iter, trust_region_radius):# x_1 = x_vector[1]# # x_2 = x_vector[2]iter = 0delta = trust_region_radius   # trust-region radiusfound = False# g_i = g(x_vector)x_current_vector = x_vectorr_i = r(x_current_vector)dr_i = dr(x_current_vector)dg_i = multiply_matrix(np.transpose(dr_i), r_i)g_i = g(x_current_vector)# if np.max(np.abs(dg_i)) < epsilon_1:if (norm(r_i, np.inf) < epsilon_3 ) or (norm(dg_i, np.inf) < epsilon_1):found = Truearray_x_1 = []array_x_2 = []array_x_3 = []# x_new_vector = np.array([0,0])# g_new = np.infwhile (found == False) and (iter < max_iter):# sH_i = sH(x_vector)array_x_1.append(x_current_vector[0])array_x_2.append(x_current_vector[1])array_x_3.append(g_i)iter += 1step_sd_i = - dg_i Jh = multiply_matrix(dr_i, step_sd_i)alpha_i = pow(norm(step_sd_i, 2), 2) / pow(norm(Jh, 2), 2)step_cp_i = alpha_i * step_sd_i                     ## Steepest descent stepsH_i = multiply_matrix(np.transpose(dr_i), dr_i)    ## Simplified Hessian Matrixinv_sH_i =  inv(sH_i)step_gn_i = - np.array(multiply_matrix(inv_sH_i, dg_i))       ## Gauss-Newton steprho = -1while (rho < 0) and (found == False):               ## Until step acceptableif norm(step_gn_i, 2) < delta:                  ## Case Istep_dl_i = step_gn_iprint("Iterating index [%d], Case I"%iter)elif norm(step_cp_i, 2) >= delta:               ## Case II step_dl_i = (delta / norm(step_sd_i, 2)) * step_sd_iprint("Iterating index [%d], Case II"%iter)else:                                           ## Case IIIstep_gn_cp_i = step_gn_i - step_cp_ign_cp_norm_sq = pow(norm(step_gn_cp_i, 2),2)delta_cp_sq = pow(delta,2) - pow(norm(step_cp_i, 2), 2)c_matrix = multiply_matrix( np.transpose(step_cp_i), step_gn_cp_i )c = c_matrix[0][0]sqrt_discriminant = sqrt( pow(c,2) + gn_cp_norm_sq * delta_cp_sq ) if (c <= 0):beta = (-c + sqrt_discriminant) / gn_cp_norm_sqelse:beta = delta_cp_sq / (c + sqrt_discriminant)step_dl_i = step_cp_i + beta * step_gn_cp_iprint("Iterating index [%d], Case III"%iter)norm_step_dl = norm(step_dl_i, 2)if (norm_step_dl <= epsilon_2 * (norm(x_current_vector, 2) + epsilon_2)):found = Trueelse:# print(x_current_vector.shape)# print(step_dl_i.shape)x_new_vector = x_current_vector + step_dl_i.flatten()g_new = g(x_new_vector)L_0 = g_iL_h = L_model(step_dl_i, g_i, dg_i, sH_i)rho = (g_i - g_new) / (L_0 - L_h)if (rho > 0):                           ## Step acceptablex_current_vector = x_new_vector     ## New iterating stater_i = r(x_current_vector)dr_i = dr(x_current_vector)dg_i = multiply_matrix(np.transpose(dr_i), r_i)g_i = g(x_current_vector)if (norm(r_i, np.inf) < epsilon_3 ) or (norm(dg_i, np.inf) < epsilon_1):found = Trueif (rho > 0.75):                        ## Expanding trust regionif (delta - 3 * norm_step_dl < 0):delta = 3 * norm_step_dlelif (rho < 0.25):                      ## Shrinking trust regiondelta = delta / 2if (delta < (epsilon_2*(norm(x_current_vector, 2)+epsilon_2))):found = Truereturn array_x_1, array_x_2, array_x_3def result_plot(trajectory, trust_region_radius):fig = plt.figure()ax3 = plt.axes(projection='3d')xx = np.arange(-5,5,0.1)yy = np.arange(-4,4,0.1)X, Y = np.meshgrid(xx, yy)Z = np.zeros((X.shape[0], Y.shape[1]), dtype = float)for i in range(X.shape[0]):for j in range(Y.shape[1]):Z[i,j] = g(np.array([X[0,j], Y[i,0]]))ax3.plot_surface(X, Y, Z, rstride = 1, cstride = 1, cmap='rainbow', alpha=0.25)ax3.contour(X, Y, Z, offset=-1, cmap = 'rainbow')ax3.plot(trajectory[0], trajectory[1], trajectory[2], "r--")offset_data = -1*np.ones(len(trajectory[0]))ax3.plot(trajectory[0], trajectory[1], offset_data,'k--')ax3.set_title('Dog Leg Method \n(Initial point [%.1f, %.1f], Trust-region radius %.2f)' %(trajectory[0][0], trajectory[1][0], trust_region_radius))ax3.set_xlabel("r_1")ax3.set_ylabel("r_2")ax3.set_zlabel("g")file_name_prefix = "./dog_leg"file_extension = ".png"radius= "-r"file_name = f"{file_name_prefix}_{trajectory[0][0]}_{trajectory[1][0]}{radius}{trust_region_radius}{file_extension}"print(file_name)plt.draw()plt.savefig(file_name)if __name__ == "__main__":test_data = np.array([[4.9, 3.9], [-2.9, 1.9], [0.1, -0.1], [-0.1, 0.1], [0,-3.8],[1,2.5]], dtype=object)trust_region_radius = np.array([0.4, 0.01, 2.0])for radius in trust_region_radius:for inital_data in test_data:print("\nInitial point: [%.1f, %.1f]" %(inital_data[0],inital_data[1]))print("Trust region radius: %.2f" %radius)epsilon_1 = 1e-6epsilon_2 = 1e-6epsilon_3 = 1e-6max_iter = 1000trajectory = dog_leg_method(inital_data, epsilon_1, epsilon_2, epsilon_3, max_iter, radius)result_plot(trajectory, radius)

3. 测试结果

A. 结果显示

测试显示 (初始点 [4.9, 3.9], 信赖域半径分别为 0.01、0.4、2.0)测试显示 (初始点 [-2.9, 1.9], 信赖域半径分别为 0.01、0.4、2.0)
Levenberg_Marquardt_4.9_3.9Levenberg_Marquardt_4.9_3.9
Levenberg_Marquardt_0.1_-0.1Levenberg_Marquardt_-0.1_0.1
Levenberg_Marquardt_0_-3.8Levenberg_Marquardt_1_2.5

B. 迭代步说明

不同信赖域的迭代步及每一步的类型如下表所示. Case III 代表该步类型为狗腿步, Case II 代表该步类型为柯西步, Case I 代表该步类型为高斯-牛顿步.

越靠近收敛极小值点, 高斯-牛顿步类型出现频率越高, 这样有利于快速收敛.

信赖域半径对计算性能也有影响.

Trust-region radius = 0.01Trust-region radius = 0.4Trust-region radius = 2.0
Initial point: [4.9, 3.9]
Trust region radius: 0.01
Iterating index [1], Case II
Iterating index [2], Case II
Iterating index [3], Case II
Iterating index [4], Case II
Iterating index [5], Case II
Iterating index [6], Case II
Iterating index [7], Case I
Iterating index [8], Case I
Iterating index [9], Case I
Iterating index [10], Case I
Iterating index [11], Case I
Iterating index [12], Case I
Iterating index [13], Case I
Iterating index [14], Case I
Iterating index [15], Case I
Iterating index [16], Case I
Iterating index [17], Case I
Iterating index [18], Case I
Iterating index [19], Case I
Iterating index [20], Case I
Iterating index [21], Case I
Iterating index [22], Case I
Iterating index [23], Case I
Iterating index [24], Case I
Iterating index [25], Case I
Initial point: [4.9, 3.9]
Trust region radius: 0.40
Iterating index [1], Case II
Iterating index [2], Case II
Iterating index [3], Case III
Iterating index [4], Case III
Iterating index [4], Case III
Iterating index [5], Case I
Iterating index [5], Case I
Iterating index [5], Case III
Iterating index [6], Case II
Iterating index [7], Case I
Iterating index [8], Case I
Iterating index [9], Case I
Iterating index [10], Case I
Iterating index [11], Case I
Iterating index [12], Case I
Iterating index [13], Case I
Iterating index [14], Case I
Iterating index [15], Case I
Iterating index [16], Case I
Iterating index [17], Case I
Iterating index [18], Case I
Iterating index [19], Case I
Iterating index [20], Case I
Iterating index [21], Case I
Iterating index [22], Case I
Iterating index [23], Case I
Initial point: [4.9, 3.9]
Trust region radius: 2.00
Iterating index [1], Case II
Iterating index [2], Case I
Iterating index [3], Case I
Iterating index [3], Case I
Iterating index [3], Case III
Iterating index [4], Case I
Iterating index [5], Case I
Iterating index [6], Case I
Iterating index [7], Case I
Iterating index [8], Case I
Iterating index [9], Case I
Iterating index [10], Case I
Iterating index [11], Case I
Iterating index [12], Case I
Iterating index [13], Case I
Iterating index [14], Case I
Iterating index [15], Case I
Iterating index [16], Case I
Iterating index [17], Case I
Iterating index [18], Case I
Iterating index [19], Case I
Iterating index [20], Case I
Iterating index [21], Case I
Iterating index [22], Case I
Initial point: [-2.9, 1.9]
Trust region radius: 0.01
Iterating index [1], Case II
Iterating index [2], Case II
Iterating index [3], Case II
Iterating index [4], Case II
Iterating index [5], Case I
Iterating index [6], Case I
Iterating index [7], Case I
Iterating index [8], Case III
Iterating index [8], Case III
Iterating index [9], Case I
Iterating index [10], Case I
Iterating index [11], Case I
Iterating index [12], Case I
Iterating index [13], Case I
Iterating index [14], Case I
Iterating index [15], Case I
Iterating index [16], Case I
Iterating index [17], Case I
Iterating index [18], Case I
Iterating index [19], Case I
Iterating index [20], Case I
Iterating index [21], Case I
Iterating index [22], Case I
Iterating index [23], Case I
Iterating index [24], Case I
Iterating index [25], Case I
Iterating index [26], Case I
Initial point: [-2.9, 1.9]
Trust region radius: 0.40
Iterating index [1], Case II
Iterating index [2], Case I
Iterating index [3], Case I
Iterating index [4], Case I
Iterating index [5], Case III
Iterating index [5], Case III
Iterating index [6], Case I
Iterating index [7], Case I
Iterating index [8], Case I
Iterating index [9], Case I
Iterating index [10], Case I
Iterating index [11], Case I
Iterating index [12], Case I
Iterating index [13], Case I
Iterating index [14], Case I
Iterating index [15], Case I
Iterating index [16], Case I
Iterating index [17], Case I
Iterating index [18], Case I
Iterating index [19], Case I
Iterating index [20], Case I
Iterating index [21], Case I
Iterating index [22], Case I
Iterating index [23], Case I
Initial point: [-2.9, 1.9]
Trust region radius: 2.00
Iterating index [1], Case I
Iterating index [2], Case I
Iterating index [3], Case III
Iterating index [4], Case III
Iterating index [4], Case III
Iterating index [5], Case I
Iterating index [6], Case I
Iterating index [7], Case I
Iterating index [8], Case I
Iterating index [9], Case I
Iterating index [10], Case I
Iterating index [11], Case I
Iterating index [12], Case I
Iterating index [13], Case I
Iterating index [14], Case I
Iterating index [15], Case I
Iterating index [16], Case I
Iterating index [17], Case I
Iterating index [18], Case I
Iterating index [19], Case I
Iterating index [20], Case I
Iterating index [21], Case I
Iterating index [22], Case I

4. 结论

以上仅为一个狗腿法的简单示例, 推导和算法请见 “非线性最小二乘问题的数值方法 —— 狗腿法 Powell‘s Dog Leg Method (I - 原理与算法)”.

如有问题请指出, 谢谢!

这篇关于非线性最小二乘问题的数值方法 —— 狗腿法 Powell‘s Dog Leg Method (II, Python 简单实例)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/636559

相关文章

Python调用Orator ORM进行数据库操作

《Python调用OratorORM进行数据库操作》OratorORM是一个功能丰富且灵活的PythonORM库,旨在简化数据库操作,它支持多种数据库并提供了简洁且直观的API,下面我们就... 目录Orator ORM 主要特点安装使用示例总结Orator ORM 是一个功能丰富且灵活的 python O

Nginx设置连接超时并进行测试的方法步骤

《Nginx设置连接超时并进行测试的方法步骤》在高并发场景下,如果客户端与服务器的连接长时间未响应,会占用大量的系统资源,影响其他正常请求的处理效率,为了解决这个问题,可以通过设置Nginx的连接... 目录设置连接超时目的操作步骤测试连接超时测试方法:总结:设置连接超时目的设置客户端与服务器之间的连接

Java判断多个时间段是否重合的方法小结

《Java判断多个时间段是否重合的方法小结》这篇文章主要为大家详细介绍了Java中判断多个时间段是否重合的方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录判断多个时间段是否有间隔判断时间段集合是否与某时间段重合判断多个时间段是否有间隔实体类内容public class D

Python使用国内镜像加速pip安装的方法讲解

《Python使用国内镜像加速pip安装的方法讲解》在Python开发中,pip是一个非常重要的工具,用于安装和管理Python的第三方库,然而,在国内使用pip安装依赖时,往往会因为网络问题而导致速... 目录一、pip 工具简介1. 什么是 pip?2. 什么是 -i 参数?二、国内镜像源的选择三、如何

IDEA编译报错“java: 常量字符串过长”的原因及解决方法

《IDEA编译报错“java:常量字符串过长”的原因及解决方法》今天在开发过程中,由于尝试将一个文件的Base64字符串设置为常量,结果导致IDEA编译的时候出现了如下报错java:常量字符串过长,... 目录一、问题描述二、问题原因2.1 理论角度2.2 源码角度三、解决方案解决方案①:StringBui

Linux使用nload监控网络流量的方法

《Linux使用nload监控网络流量的方法》Linux中的nload命令是一个用于实时监控网络流量的工具,它提供了传入和传出流量的可视化表示,帮助用户一目了然地了解网络活动,本文给大家介绍了Linu... 目录简介安装示例用法基础用法指定网络接口限制显示特定流量类型指定刷新率设置流量速率的显示单位监控多个

Java覆盖第三方jar包中的某一个类的实现方法

《Java覆盖第三方jar包中的某一个类的实现方法》在我们日常的开发中,经常需要使用第三方的jar包,有时候我们会发现第三方的jar包中的某一个类有问题,或者我们需要定制化修改其中的逻辑,那么应该如何... 目录一、需求描述二、示例描述三、操作步骤四、验证结果五、实现原理一、需求描述需求描述如下:需要在

JavaScript中的reduce方法执行过程、使用场景及进阶用法

《JavaScript中的reduce方法执行过程、使用场景及进阶用法》:本文主要介绍JavaScript中的reduce方法执行过程、使用场景及进阶用法的相关资料,reduce是JavaScri... 目录1. 什么是reduce2. reduce语法2.1 语法2.2 参数说明3. reduce执行过程

C#中读取XML文件的四种常用方法

《C#中读取XML文件的四种常用方法》Xml是Internet环境中跨平台的,依赖于内容的技术,是当前处理结构化文档信息的有力工具,下面我们就来看看C#中读取XML文件的方法都有哪些吧... 目录XML简介格式C#读取XML文件方法使用XmlDocument使用XmlTextReader/XmlTextWr

mybatis和mybatis-plus设置值为null不起作用问题及解决

《mybatis和mybatis-plus设置值为null不起作用问题及解决》Mybatis-Plus的FieldStrategy主要用于控制新增、更新和查询时对空值的处理策略,通过配置不同的策略类型... 目录MyBATis-plusFieldStrategy作用FieldStrategy类型每种策略的作