pix2pix在keras上的训练以及优化效果过程

2024-01-23 12:20

本文主要是介绍pix2pix在keras上的训练以及优化效果过程,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

pix2pix在keras上训练

  • 1 背景
  • 2 初步训练
  • 3 优化
    • 3.1. 工具类优化:
    • 3.2 算法类优化
  • 4. 优化效果
  • 5. 存在的问题
  • 6. 如果有什么建议可以评论联系我,一起来讨论下.

1 背景

pix2pix提供的示例是使用tensorflow,我我参考着来做了一个keras的实现,原项目中使用的是生成网络加上判别网络来提升生成网络,而我观察实际在训练中判别部分起到的作用比较小,所以我先尝试只使用生成网络来做训练.
具体的项目代码在:pix2pix-keras

2 初步训练

下图为迭代了80次之后在训练下的一个效果,纹理上是逐渐变清晰的.
在这里插入图片描述
但是问题是左上部分的几乎没到训练出效果.

3 优化

此问题的根本是在最后一层时左上部分的输出值过大.

为了定位解决此问题我尝试了几个角度的优化:

3.1. 工具类优化:

- 将所有layer的输出绘制成图像打出,用于观察在那一层开始出现的偏差
- 将所有layer的weight输出,用于观察是如何滚最后一层的时候出现过大数值.
- 将训练过程中每次样本产生梯度更新是的输入输出画出来观察是从那些步骤开始出现问题.
![将没一层输出可视化](https://img-blog.csdnimg.cn/2019122015281159.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L2hscG93ZXI=,size_16,color_FFFFFF,t_70)![将所有训练步骤产生的跟新全部打出来](https://img-blog.csdnimg.cn/20191220150910498.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L2hscG93ZXI=,size_16,color_FFFFFF,t_70)

工具类代码均更新在git上.

最终定位到是是部分样本上由于光照和裁剪的问题
如遇到以下的样本,对训练引起的偏差较大.
图片中最下层是容易一起训练跑偏的样本,分析如,周边有几个黑色三角型的剪裁.将建筑物遮挡过多,但输入是未处理这些遮挡
在这里插入图片描述

3.2 算法类优化

为了更好训练,我重新审核了一次训练样本,将其中比较差的样本剔除,然后调整loss从mse到mae,之前使用平方是为了加大对误差的灵敏度,后来发现最后输出的数值过小平方反而降低了训练效率.另外为了提高训练速度吧batch该为了2,这个是我的内存能够加载的上限.

4. 优化效果

loss曲线如下:
在这里插入图片描述
不同epho下测试数据上效果:
在这里插入图片描述
总的来说相对于之前的效果好了不少.

5. 存在的问题

我把测试集所有的建筑物全部过了一遍发现以下问题:

  1. 纹理特征还是有一点模糊.
  2. 会丢失一些建筑物特有特征,如屋檐,窗帘,阳台等
  3. 输出墙面基本都是以灰土色为主,原本建筑物可能是红色墙面
    在这里插入图片描述
    在这里插入图片描述
    原因分析:
  4. 细致话的特征样本较少,如阳台虽然都拿绿色标记,但是不同建筑物的阳台各有风格,少量的样本对这种细的纹理特征较难学习到.

6. 如果有什么建议可以评论联系我,一起来讨论下.

这篇关于pix2pix在keras上的训练以及优化效果过程的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/636390

相关文章

Oracle查询优化之高效实现仅查询前10条记录的方法与实践

《Oracle查询优化之高效实现仅查询前10条记录的方法与实践》:本文主要介绍Oracle查询优化之高效实现仅查询前10条记录的相关资料,包括使用ROWNUM、ROW_NUMBER()函数、FET... 目录1. 使用 ROWNUM 查询2. 使用 ROW_NUMBER() 函数3. 使用 FETCH FI

C#使用HttpClient进行Post请求出现超时问题的解决及优化

《C#使用HttpClient进行Post请求出现超时问题的解决及优化》最近我的控制台程序发现有时候总是出现请求超时等问题,通常好几分钟最多只有3-4个请求,在使用apipost发现并发10个5分钟也... 目录优化结论单例HttpClient连接池耗尽和并发并发异步最终优化后优化结论我直接上优化结论吧,

Java内存泄漏问题的排查、优化与最佳实践

《Java内存泄漏问题的排查、优化与最佳实践》在Java开发中,内存泄漏是一个常见且令人头疼的问题,内存泄漏指的是程序在运行过程中,已经不再使用的对象没有被及时释放,从而导致内存占用不断增加,最终... 目录引言1. 什么是内存泄漏?常见的内存泄漏情况2. 如何排查 Java 中的内存泄漏?2.1 使用 J

SpringBoot 整合 Grizzly的过程

《SpringBoot整合Grizzly的过程》Grizzly是一个高性能的、异步的、非阻塞的HTTP服务器框架,它可以与SpringBoot一起提供比传统的Tomcat或Jet... 目录为什么选择 Grizzly?Spring Boot + Grizzly 整合的优势添加依赖自定义 Grizzly 作为

mysql-8.0.30压缩包版安装和配置MySQL环境过程

《mysql-8.0.30压缩包版安装和配置MySQL环境过程》该文章介绍了如何在Windows系统中下载、安装和配置MySQL数据库,包括下载地址、解压文件、创建和配置my.ini文件、设置环境变量... 目录压缩包安装配置下载配置环境变量下载和初始化总结压缩包安装配置下载下载地址:https://d

MySQL不使用子查询的原因及优化案例

《MySQL不使用子查询的原因及优化案例》对于mysql,不推荐使用子查询,效率太差,执行子查询时,MYSQL需要创建临时表,查询完毕后再删除这些临时表,所以,子查询的速度会受到一定的影响,本文给大家... 目录不推荐使用子查询和JOIN的原因解决方案优化案例案例1:查询所有有库存的商品信息案例2:使用EX

springboot整合gateway的详细过程

《springboot整合gateway的详细过程》本文介绍了如何配置和使用SpringCloudGateway构建一个API网关,通过实例代码介绍了springboot整合gateway的过程,需要... 目录1. 添加依赖2. 配置网关路由3. 启用Eureka客户端(可选)4. 创建主应用类5. 自定

MySQL中my.ini文件的基础配置和优化配置方式

《MySQL中my.ini文件的基础配置和优化配置方式》文章讨论了数据库异步同步的优化思路,包括三个主要方面:幂等性、时序和延迟,作者还分享了MySQL配置文件的优化经验,并鼓励读者提供支持... 目录mysql my.ini文件的配置和优化配置优化思路MySQL配置文件优化总结MySQL my.ini文件

最新版IDEA配置 Tomcat的详细过程

《最新版IDEA配置Tomcat的详细过程》本文介绍如何在IDEA中配置Tomcat服务器,并创建Web项目,首先检查Tomcat是否安装完成,然后在IDEA中创建Web项目并添加Web结构,接着,... 目录配置tomcat第一步,先给项目添加Web结构查看端口号配置tomcat    先检查自己的to

基于Python实现PDF动画翻页效果的阅读器

《基于Python实现PDF动画翻页效果的阅读器》在这篇博客中,我们将深入分析一个基于wxPython实现的PDF阅读器程序,该程序支持加载PDF文件并显示页面内容,同时支持页面切换动画效果,文中有详... 目录全部代码代码结构初始化 UI 界面加载 PDF 文件显示 PDF 页面页面切换动画运行效果总结主