pix2pix在keras上的训练以及优化效果过程

2024-01-23 12:20

本文主要是介绍pix2pix在keras上的训练以及优化效果过程,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

pix2pix在keras上训练

  • 1 背景
  • 2 初步训练
  • 3 优化
    • 3.1. 工具类优化:
    • 3.2 算法类优化
  • 4. 优化效果
  • 5. 存在的问题
  • 6. 如果有什么建议可以评论联系我,一起来讨论下.

1 背景

pix2pix提供的示例是使用tensorflow,我我参考着来做了一个keras的实现,原项目中使用的是生成网络加上判别网络来提升生成网络,而我观察实际在训练中判别部分起到的作用比较小,所以我先尝试只使用生成网络来做训练.
具体的项目代码在:pix2pix-keras

2 初步训练

下图为迭代了80次之后在训练下的一个效果,纹理上是逐渐变清晰的.
在这里插入图片描述
但是问题是左上部分的几乎没到训练出效果.

3 优化

此问题的根本是在最后一层时左上部分的输出值过大.

为了定位解决此问题我尝试了几个角度的优化:

3.1. 工具类优化:

- 将所有layer的输出绘制成图像打出,用于观察在那一层开始出现的偏差
- 将所有layer的weight输出,用于观察是如何滚最后一层的时候出现过大数值.
- 将训练过程中每次样本产生梯度更新是的输入输出画出来观察是从那些步骤开始出现问题.
![将没一层输出可视化](https://img-blog.csdnimg.cn/2019122015281159.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L2hscG93ZXI=,size_16,color_FFFFFF,t_70)![将所有训练步骤产生的跟新全部打出来](https://img-blog.csdnimg.cn/20191220150910498.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L2hscG93ZXI=,size_16,color_FFFFFF,t_70)

工具类代码均更新在git上.

最终定位到是是部分样本上由于光照和裁剪的问题
如遇到以下的样本,对训练引起的偏差较大.
图片中最下层是容易一起训练跑偏的样本,分析如,周边有几个黑色三角型的剪裁.将建筑物遮挡过多,但输入是未处理这些遮挡
在这里插入图片描述

3.2 算法类优化

为了更好训练,我重新审核了一次训练样本,将其中比较差的样本剔除,然后调整loss从mse到mae,之前使用平方是为了加大对误差的灵敏度,后来发现最后输出的数值过小平方反而降低了训练效率.另外为了提高训练速度吧batch该为了2,这个是我的内存能够加载的上限.

4. 优化效果

loss曲线如下:
在这里插入图片描述
不同epho下测试数据上效果:
在这里插入图片描述
总的来说相对于之前的效果好了不少.

5. 存在的问题

我把测试集所有的建筑物全部过了一遍发现以下问题:

  1. 纹理特征还是有一点模糊.
  2. 会丢失一些建筑物特有特征,如屋檐,窗帘,阳台等
  3. 输出墙面基本都是以灰土色为主,原本建筑物可能是红色墙面
    在这里插入图片描述
    在这里插入图片描述
    原因分析:
  4. 细致话的特征样本较少,如阳台虽然都拿绿色标记,但是不同建筑物的阳台各有风格,少量的样本对这种细的纹理特征较难学习到.

6. 如果有什么建议可以评论联系我,一起来讨论下.

这篇关于pix2pix在keras上的训练以及优化效果过程的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/636390

相关文章

springboot3.x使用@NacosValue无法获取配置信息的解决过程

《springboot3.x使用@NacosValue无法获取配置信息的解决过程》在SpringBoot3.x中升级Nacos依赖后,使用@NacosValue无法动态获取配置,通过引入SpringC... 目录一、python问题描述二、解决方案总结一、问题描述springboot从2android.x

MySQL数据目录迁移的完整过程

《MySQL数据目录迁移的完整过程》文章详细介绍了将MySQL数据目录迁移到新硬盘的整个过程,包括新硬盘挂载、创建新的数据目录、迁移数据(推荐使用两遍rsync方案)、修改MySQL配置文件和重启验证... 目录1,新硬盘挂载(如果有的话)2,创建新的 mysql 数据目录3,迁移 MySQL 数据(推荐两

MyBatis-Plus逻辑删除实现过程

《MyBatis-Plus逻辑删除实现过程》本文介绍了MyBatis-Plus如何实现逻辑删除功能,包括自动填充字段、配置与实现步骤、常见应用场景,并展示了如何使用remove方法进行逻辑删除,逻辑删... 目录1. 逻辑删除的必要性编程1.1 逻辑删除的定义1.2 逻辑删php除的优点1.3 适用场景2.

Spring Boot基于 JWT 优化 Spring Security 无状态登录实战指南

《SpringBoot基于JWT优化SpringSecurity无状态登录实战指南》本文介绍如何使用JWT优化SpringSecurity实现无状态登录,提高接口安全性,并通过实际操作步骤... 目录Spring Boot 实战:基于 JWT 优化 Spring Security 无状态登录一、先搞懂:为什

JAVA SpringBoot集成Jasypt进行加密、解密的详细过程

《JAVASpringBoot集成Jasypt进行加密、解密的详细过程》文章详细介绍了如何在SpringBoot项目中集成Jasypt进行加密和解密,包括Jasypt简介、如何添加依赖、配置加密密钥... 目录Java (SpringBoot) 集成 Jasypt 进行加密、解密 - 详细教程一、Jasyp

Java通过ServerSocket与Socket实现通信过程

《Java通过ServerSocket与Socket实现通信过程》本文介绍了Java中的ServerSocket和Socket类,详细讲解了它们的构造方法和使用场景,并通过一个简单的通信示例展示了如何... 目录1 ServerSocket2 Socket3 服务器端4 客户端5 运行结果6 设置超时总结1

Java JAR 启动内存参数配置指南(从基础设置到性能优化)

《JavaJAR启动内存参数配置指南(从基础设置到性能优化)》在启动Java可执行JAR文件时,合理配置JVM内存参数是保障应用稳定性和性能的关键,本文将系统讲解如何通过命令行参数、环境变量等方式... 目录一、核心内存参数详解1.1 堆内存配置1.2 元空间配置(MetASPace)1.3 线程栈配置1.

MongoDB搭建过程及单机版部署方法

《MongoDB搭建过程及单机版部署方法》MongoDB是一个灵活、高性能的NoSQL数据库,特别适合快速开发和大规模分布式系统,本文给大家介绍MongoDB搭建过程及单机版部署方法,感兴趣的朋友跟随... 目录前言1️⃣ 核心特点1、文档存储2、无模式(Schema-less)3、高性能4、水平扩展(Sh

MySQL中存储过程(procedure)的使用及说明

《MySQL中存储过程(procedure)的使用及说明》存储过程是预先定义的SQL语句集合,可在数据库中重复调用,它们提供事务性、高效性和安全性,MySQL和Java中均可创建和调用存储过程,示例展... 目录概念示例1示例2总结概念存储过程:在数据库中预先定义好一组SQL语句,可以被程序反复调用。

MySQL存储过程实践(in、out、inout)

《MySQL存储过程实践(in、out、inout)》文章介绍了数据库中的存储过程,包括其定义、优缺点、性能调校与撰写,以及创建和调用方法,还详细说明了存储过程的参数类型,包括IN、OUT和INOUT... 目录简述存储过程存储过程的优缺点优点缺点存储过程的创建和调用mysql 存储过程中的关键语法案例存储